《地球化学土壤样品 15 种挥发性卤代烃的测定 顶空-气相色谱-质谱法》
（报批稿）
编制说明

中国地质大学（北京）
2022 年 9 月
目 次

第一章 工作简况 ... 1
 1.1 任务来源 ... 1
 1.2 起草单位和起草人分工 ... 1
 1.3 主要工作过程 ... 3

第二章 标准编制原则和确定标准主要内容的论据 6
 2.1 标准编制原则 ... 6
 2.2 确定标准主要内容的论据 .. 6

第三章 主要试验分析和技术论证 ... 10
 3.1 实验仪器与试剂 ... 10
 3.2 顶空与 GC 仪器参数优化 .. 12
 3.3 顶空试样基质优化 .. 18
 3.4 方法性能指标 ... 23
 3.5 土壤样品提取方法 .. 27
 3.6 实验方法 ... 31
 3.7 精密度实验 .. 32
 3.8 正确度实验（实验室间比对） 56

第四章 采用国际标准和国外先进标准的程度以及与国际、国内同类标准水平的对比情况 ... 74

第五章 与有关的现行法律、法规和强制性标准的关系 74

第六章 重大分歧意见的处理经过和依据 74

第七章 标准作为强制性和推荐性标准的建议 74

第八章 贯彻标准的要求和措施建议 75

第九章 废止现行有关标准的建议 .. 75

第十章 其他应予说明的事项 ... 75
 10.1 关于修改标准名称的说明 ... 75
 10.2 关于专利情况的说明 ... 76
地球化学土壤样品 15 种挥发性卤代烃的测定
顶空-气相色谱-质谱法
编制说明

第一章 工作简况

1.1 任务来源

通过“地质调查实验测试方法系列标准研究与修订”工作，可以形成挥发性卤代有机物的测定技术标准，从而使测试分析工作更加科学化、规范化、更好的、及时的、有效的为地质调查行业和社会经济发展服务，获得良好的调查成果转化和社会化效益。

2010 年 1 月，中国地质大学（北京）承担了中国地质调查局的“地质调查实验测试方法系列标准研究与修订”工作任务。项目承担单位组织相关技术人员在收集国内外相关资料基础上，根据任务书，编写《土壤中 15 种挥发性卤代有机污染物的分析方法(GC-MS)》。

2011 年 12 月，本标准列入标准制修订计划，文件名称：国土资源部办公厅关于印发《2011 年度国土资源行业标准制修订计划的通知》，文号：国土资厅发〔2011〕61 号：2011021。

1.2 起草单位和起草人分工

本标准负责起草单位：中国地质大学（北京）、中国石油集团安全环保技术研究院有限公司、国家地质实验测试中心。

本文件主要起草人员：罗锡明，刘玉龙，刘菲，李烨，马晗宇，付佳妮，阎妮，董洪忠。
本标准编制组人员及工作内容见表1。
表 1 主要编制人员情况

<table>
<thead>
<tr>
<th>序号</th>
<th>姓名</th>
<th>学历</th>
<th>专业</th>
<th>职称</th>
<th>对本标准的具体贡献</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>罗锡明</td>
<td>博士</td>
<td>环境工程</td>
<td>教授</td>
<td>项目负责人，资料收集、主要方法验证、标准及编制说明编写</td>
</tr>
<tr>
<td>2</td>
<td>刘玉龙</td>
<td>博士</td>
<td>环境工程</td>
<td>高级工程师</td>
<td>标准的起草及方法验证</td>
</tr>
<tr>
<td>3</td>
<td>刘菲</td>
<td>博士</td>
<td>水文学与水资源</td>
<td>教授</td>
<td>项目负责人，技术负责，主持项目实施，标准起草</td>
</tr>
<tr>
<td>4</td>
<td>李熠</td>
<td>博士</td>
<td>环境工程</td>
<td>正高级工程师</td>
<td>资料收集、方法的建立</td>
</tr>
<tr>
<td>5</td>
<td>马晗宇</td>
<td>硕士</td>
<td>地下水科学与工程</td>
<td>工程师</td>
<td>标准及主要编制说明的编写</td>
</tr>
<tr>
<td>6</td>
<td>付佳妮</td>
<td>硕士</td>
<td>环境科学与工程</td>
<td>高级工程师</td>
<td>方法的建立</td>
</tr>
<tr>
<td>7</td>
<td>阎妮</td>
<td>博士</td>
<td>水文学</td>
<td>副教授</td>
<td>方法的建立</td>
</tr>
<tr>
<td>8</td>
<td>董洪忠</td>
<td>硕士</td>
<td>地下水科学与工程</td>
<td>高级工程师</td>
<td>方法的建立</td>
</tr>
</tbody>
</table>

参加精密度协作试验的单位：

（1）国家标准物质中心（2组，不同的人员、时间和仪器）

（2）中国地质大学（北京）

（3）国土资源部地下水矿泉水及环境监测中心

（4）国家环境分析测试中心

（5）国家地质实验测试中心。

1.3 主要工作过程

1.3.1 标准起草阶段

2010年1月，成立了本标准方法研究工作小组，召开第一次会议，确定了本标准的制订方案和研制计划。

2010年2月~12月，在对国内外相关分析方法文献、分析方法标准等广泛调研、认真研究的基础上，以美国 EPA 分析方法为指导，追踪国内外最新
进展，结合国内地调行业的实情，以国内外现有的土壤/沉积物中挥发性有机物分析方法标准为基础，收集整理现有分析方法和有关标准，总结以往工作经验，结合地质调查工作现状和需求，开展了本标准方法验证试验和实验室内的方法检出限、准确度、精密度试验，共计 6 家实验室参加本标准方法的实验室协作试验。

2011年1月-6月，组织相关人员参加标准编写的培训，由专人负责编写分析标准，并由顾问组经验丰富的专家进行指导和监督，起草《土壤中15种挥发性卤代有机污染物的分析方法（GC-MS）（草案）》。

2011年7月-12月，修改完善《土壤中15种挥发性卤代有机污染物的测定气相色谱-质谱法（草案）》及编制说明，形成《土壤中15种挥发性卤代有机污染物的测定气相色谱-质谱（征求意见稿）》及编制说明。

1.3.2 标准征求意见稿阶段

2012年1月-3月，对《土壤中15种挥发性卤代有机污染物的分析方法（GC-MS）（征求意见稿）》及编制说明进行广泛征求意见。

2012年4月-8月，汇总修改意见并修改完善《土壤中15种挥发性卤代有机污染物的分析方法（GC-MS）（征求意见稿）》及编制说明。

2012年9月，在北京召开论证会，专家建议将标准名称修改为《土壤15种挥发性卤代烃的测定 顶空-气相色谱-质谱法》。

1.3.3 标准送审稿阶段

2012年10月-2015年11月，标准编制组集中精力根据各有关方面的意见对文本进一步完善，最终形成《土壤 15 种挥发性卤代烃的测定 顶空-气相色谱-质谱法》（送审稿），编制说明及征求意见汇总处理表。
2015 年 12 月 13 日-14 日，全国国土资源标准化技术委员会地质矿产实验测试分技术委员会（SAC/TC93/SC4）组织委员在西安召开标准审查会，对《土壤中 15 种挥发性卤代有机污染物的分析方法（GC-MS）》（送审稿）进行了审查。专家一致同意通过审查，建议修改完善后作为推荐性行业标准上报。

1.3.4 标准报批稿阶段

2016 年 1 月至 2022 年 8 月，标准编制组依据全国国土资源标准化技术委员会地质矿产实验测试分技术委员会（SAC/TC93/SC4）的审查意见，结合专家所提出建议，对本标准方法送审材料进行了认真的归纳、总结并修改完善形成《地球化学土壤样品 15 种挥发性卤代烃的测定 顶空-气相色谱-质谱法》（报批稿）及相关报批材料。

2022 年 9 月，在系统中进行该标准报批。
第二章 标准编制原则和确定标准主要内容的论据

2.1 标准编制原则

以国内外现有的土壤/沉积物中挥发性有机污染物分析方法标准为基础，淘汰复杂的分析方法和前处理方法，吸纳先进的、成熟的、简便的、易于推广的分析方法和前处理方法。采用文献调研、实验室实验、数理统计分析相结合的方法开展项目工作，编写《地球化学土壤样品15种挥发性卤代烃的顶空-气相色谱-质谱法》与编制说明，以适应目前土壤测试技术发展的需要，为地质调查的需要提供技术支持。

2.2 确定标准主要内容的论据

2.2.1 土壤前处理

（1）洗脱和提取

洗脱和提取是利用相似相溶的原理，使用有机溶剂，对土壤/沉积物中的挥发性有机物进行提取分析。上世纪70年代美国环保局将该技术应用于土壤基质，但大量研究报道表明，土壤洗脱和提取方法的回收率很低，而且手工操作一方面易造成有机溶剂的消耗，对操作者的健康造成很大的威胁；另一方面也易导致待测土壤中VOCs的损失。

（2）固相微萃取

固相微萃取（Solid Phase Micro Extration, SPME）是在固相萃取的基础上发展起来的一种样品前处理技术。固相微萃取主要针对有机物进行分析，根据有机物与溶剂之间“相似相溶”的原理，利用石英纤维表面的色谱固定相对分析组分的吸附作用，将组分从样品基质中萃取出来，并逐渐富集，完成前处理过程。该方法操作简单，适应范围广，灵敏度高，无需消耗
溶剂，便于实现自动化。此法采用的是液相到气相，再到固相的转换。在测定土壤/沉积物样品之前，需用有机溶剂将VOCs萃取下来。但商品化纤维种类较少，且容易破碎，使用寿命有限，在很大程度上限制了该技术的应用范围。

（3）吹扫捕集

吹扫捕集是利用氮或氦等不活性气体吹脱水样，把水样中的VOCs不断地吹脱出来，进入气相带入捕集管，不断地被吸附捕集。捕集结束后，迅速加热捕集管，所捕集的有机物快速脱附，导入气相色谱仪。气相色谱仪可采用在线冷柱头进样，使加热脱附出来的有机物冷凝浓缩，然后快速加热，完成进样。吹扫捕集法灵敏度高，操作简便，适用于低浓度水质和土壤/沉积物样品中VOCs的检测。但对于较高浓度的土壤/沉积物样品，由于样品基体复杂，存在VOCs吹脱效率不高、吹脱率不一致的问题，限制了吹扫捕集对高浓度VOCs土壤样品中VOCs的测定。

（4）顶空法

顶空技术是将土壤样品置于顶空瓶内，样品中的挥发性组分会向容器的液相和气相迁移，产生蒸气压，在一定条件下，当固气液三相间达到热力学动态平衡时，取气相样品进行色谱分析。该法具有测定范围广，操作简便，分析快捷，准确灵敏和干扰少等特点，可很方便地进行多个样品的连续检测，避免了样品转移过程中待测物的损失。但顶空法也存在灵敏度低，不能浓缩样品和定量需校正等问题。

目前，还没有普遍公认的方法测定土壤/沉积物中挥发性有机物的方法，最为常用的是美国EPA发布的吹扫捕集（P&T）和顶空（HS）与气相色谱质谱联
用标准方法。

2.2.2 仪器检测

气相色谱法具有高分离性能、高选择性、高灵敏度、分析速度快、定量准确、应用范围广，样品用量少等特点。

气相色谱的工作原理是依靠色谱柱对有机物进行分离，流动相载着样品通过色谱柱时，样品中的组分在流动相和固定相之间移动连续多次进行分配平衡，由于各组分的物理化学性质和几何结构不同，沿着色谱柱运动的速度也就不同。经过适当长度的色谱柱后，各组分之间就会拉开一定的距离，按照先后顺序从色谱柱流出，通过相应的检测器对待测组分进行检测，使用数据处理系统记录色谱信号，对色谱信号进行存储和处理，进行定性和定量分析。

气相色谱可以连接不同的检测器，常用的检测器有 ECD、FID 和 MSD。

（1）电子捕获检测器（ECD）

电子捕获检测器是一种具有高灵敏度和选择性的浓度型检测器，载气的纯度和流速对信号值和稳定性有很大的影响，广泛地用于含氟、含氯及硝基化合物等的检测，是气相色谱检测器中灵敏度最高的一种选择性检测器。

（2）氢火焰离子化检测器（FID）

氢火焰离子化检测器是气相色谱中最常见的一种检测器，是质量型检测器，对几乎所有挥发性的有机化合物均有响应，对所有烃类化合物（碳数 ≥ 3）的相对响应值几乎相等，对含杂原子的烃类有机物中的同系物（碳数 ≥ 3）的相对响应值也几乎相等。这给化合物的定量带来很大的方便，而且具有灵敏度高（10^{-11} - 10^{-10}g/s）、基流小（10^{-14} - 10^{-13}A）、线性范围宽，死体积小（≤
1μL）、响应快（1ms）、可以和毛细管柱直接联用、检测器耐用、噪声小、基线稳定性好、对气体流速和压力变化不敏感等优点，所以是应用最广泛的气相色谱检测器。

（3）质谱检测器（MSD）

质谱法主要是通过对样品的离子质荷比进行分析而实现对样品的定性和定量的一种方法，因而所有质谱仪都必须有电离装置把样品电离为离子，有质量分析装置把不同质荷比的离子分开，经检测器检测后可以得到样品的质谱图。

当样品由气相色谱流出，通过质谱中，离子源发射的离子轰击检测的样品分子，使其带电形成特异性的分子离子碎片，通过不同的质荷比对样品进行定性定量分析。质谱很好地解决了FID检测方法对于样品分子定性上的不足，因此目前GC-MS法在挥发性有机物的检测上得到了广泛应用。

综上所述，编辑组结合土壤/沉积物中挥发性有机污染物的样品前处理技术和检测技术特点，以美国EPA分析方法为指导，追踪国内外最新进展，结合国内地调行业的实情，以国内外现有的土壤/沉积物中挥发性有机污染物分析方法标准为基础，收集整理现有分析方法和有关标准，总结以往工作经验，结合地质调查工作现状和需求，研制《土壤中15种挥发性卤代有机污染物的分析方法》，确定采用顶空-气相色谱-质谱法分析土壤中的挥发性卤代烃，从而使测试分析工作更加科学化、规范化，更好的、及时的、有效的为地质调查行业和社会经济发展服务，获得良好的调查成果转化和社会化效益。
第三章 主要试验分析和技术论证

3.1 实验仪器与试剂

3.1.1 仪器设备

Agilent 6890/5973N 气相色谱-质谱仪（美国安捷伦公司）；
DB-VRX 毛细管色谱柱 (60 m × 0.25 mm × 1.4 μm, 美国安捷伦公司)；
G1888 型顶空自动进样器（美国安捷伦公司）；
20mL 顶空瓶；
压盖器；
气密性注射器: 10 μL, 50 μL, 100 μL, 1000 μL

3.1.2 标准物质和试剂

Vinyl chloride Solution: 2 000 μg.mL⁻¹ (Chem Service, Inc.);
502/524 Volatile Organics Calibration Mix: 2 000 μg.mL⁻¹ (Chem Service, Inc.);
Fluorobenzene Solution: 2 000 μg.mL⁻¹ (Chem Service, Inc.);
Surrogate Standard mixture – 502/524 in Methanol: 2 000 μg.mL⁻¹ (Chem Service, Inc.);

氦气: 99.999% (北京普莱克斯气体有限公司);
超纯水;
甲醇: 农残级;
氯化钠: 分析纯。使用前在 450℃马弗炉中灼烧 4 小时, 冷却后放置干燥器中备用;
GSS-13 土壤标准物质;
CRM628-030 土壤中挥发性有机物标准物质，其特性量值见表 1。

表 1 标准土壤样品目标物浓度（mg/kg）

<table>
<thead>
<tr>
<th>有机物</th>
<th>认定值</th>
<th>标准偏差</th>
<th>置信区间</th>
<th>可预测区间</th>
</tr>
</thead>
<tbody>
<tr>
<td>二氯甲烷</td>
<td>0.850</td>
<td>0.430</td>
<td>0.641 - 1.06</td>
<td>0.00 - 1.78</td>
</tr>
<tr>
<td>三氯甲烷</td>
<td>6.39</td>
<td>1.26</td>
<td>5.95 - 6.84</td>
<td>3.88 - 8.90</td>
</tr>
<tr>
<td>四氯化碳</td>
<td>5.13</td>
<td>1.33</td>
<td>4.64 - 5.61</td>
<td>2.36 - 7.89</td>
</tr>
<tr>
<td>一溴二氯甲烷</td>
<td>4.82</td>
<td>0.823</td>
<td>4.50 - 5.14</td>
<td>3.11 - 6.53</td>
</tr>
<tr>
<td>二溴一氯甲烷</td>
<td>3.67</td>
<td>0.617</td>
<td>3.43 - 3.91</td>
<td>2.38 - 4.95</td>
</tr>
<tr>
<td>三溴甲烷</td>
<td>3.62</td>
<td>0.738</td>
<td>3.35 - 3.90</td>
<td>2.09 - 5.16</td>
</tr>
<tr>
<td>1,1,2-三氯乙烷</td>
<td>8.61</td>
<td>1.32</td>
<td>8.11 - 9.11</td>
<td>5.85 - 11.4</td>
</tr>
<tr>
<td>1,1-二氯乙烯</td>
<td>12.1</td>
<td>3.67</td>
<td>10.6 - 13.5</td>
<td>4.35 - 19.8</td>
</tr>
<tr>
<td>1,2-二氯乙烷</td>
<td>3.86</td>
<td>0.777</td>
<td>3.55 - 4.16</td>
<td>2.23 - 5.48</td>
</tr>
<tr>
<td>1,2-二氯丙烷</td>
<td>6.01</td>
<td>1.01</td>
<td>5.63 - 6.39</td>
<td>3.92 - 8.10</td>
</tr>
<tr>
<td>三氯乙烯</td>
<td>(0.697)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.1.3 标准使用液

（1）MixVOC20：20 mg/L

分别用 10 μL 注射器依次准确移取 10 μL 的 54VOC2000 和 VC2000 标准溶液加入到已加有 980 μL 甲醇的带 PTFE 密封盖 2 mL 样品瓶中，摇匀。于-18 ℃保存，期限 7 天（保存时需换盖）。一次性使用。

（2）MixVOC200：200 mg/L

分别用 100 μL 注射器依次准确移取 100 μL 54VOC2000 和 VC2000 标准溶液加入到已加有 800 μL 甲醇的带 PTFE 密封盖 2 mL 样品瓶中，摇匀。于-18 ℃保存，期限 7 天（保存时需换盖）。一次性使用。

（3）IS+SS：200 mg/L
分别用 100 μL 注射器依次准确移取 100 μL 的 SS(VOC)2000 和 IS(VOC)2000 加入到已加有 800 μL 甲醇的带 PTFE 密封盖 2mL 样品瓶中，换盖，摇匀。于-18℃保存，期限 7 天。一次性使用。

3.2 顶空与 GC 仪器参数优化

3.2.1 初始仪器参数

（1）顶空条件

载气压力: 16.6 psi; 载气: 99.999% He; 瓶区温度: 80℃; LOOP 环温度: 90℃; 传输线温度: 150℃; GC 循环时间: 45.00 min; 摇瓶时间: 20.00 min; 加压时间: 0.08 min; LOOP 环充满时间: 0.50 min; LOOP 环平衡时间: 0.15 min; 注射时间: 1.00 min。

（2）GC 条件

载气: 99.999% He; 柱流速: 1.00 mL/min; 进样口温度: 150℃; 接口温度: 235℃; 进样口温度: 150℃; 分流比: 10:1。柱温: 初始 40℃保持 5min，以 6℃/min 的速度升温至 140℃，再以 5℃/min 的速度升至 210℃。

（3）MS 条件

EI 离子源, 70 eV; 离子源温度: 230℃; 四极杆温度: 150℃; 扫描方式: SIM; 溶剂延迟: 5.00 min。

在初始条件下，分别改变瓶区温度、摇瓶时间、柱流速和分流比等四个条件参数，对顶空-GC-MS 法测 VOCs 进行方法优化。

3.2.2 顶空瓶区温度

配制 7 组 STD400 溶液，分别改变顶空摇瓶温度 60℃, 65℃, 70℃, 75℃, 80℃, 85℃ 和 90℃，在其他条件不变的情况下，优化最佳摇瓶温度。分别采
用峰面积响应值方法进行统计。比较 7 个温度下 15 个目标有机物峰面积，随着温度升高，目标物的峰面积缓慢增大 (图 1)。结合本研究采用内标法定量，采用比响应因子（目标物响应值除与对应内标物响应值之比）进行比较（图 2）。从图 2 中可以看出，响应值比的大小变化趋势与响应值相似。随着瓶区温度的升高，总体趋势在逐渐增大。但在 75℃时都存在降低。之后继续上升。在 80℃时有机物具有最高的响应值比。继续升高温度，响应值比开始下降。综上所述，提高平衡温度可以使更多的挥发性组分从液相中进入气相，进而响应值增大，灵敏度提高。但是沸点低的有机物响应值和响应值比在较低温度下较高；而高沸点的有机物则不同，所以摇瓶温度应综合考虑各种有机物的沸点，选取较为适中的，且物质峰响应值比较高的值。故顶空摇瓶温度设置为 80℃。

图 1 目标物响应值随摇瓶温度的变化
配制 7 组 STD400 溶液，分别改变顶空摇瓶时间 20min、25min、30min 和 35min，设定摇瓶温度 80℃，其他条件不变，优化最佳摇瓶时间。

摇瓶的时间与挥发性有机物的饱和蒸汽压具有相关性。图 3 为目标物响应值随顶空平衡时间的变化，可以看出目标物的响应值随时间具有持续下降的趋势，变化不大。

结合本研究采用内标法定量，采用比响应因子（目标物响应值除与对应内标物响应值之比）进行比较。图 4 中可以看出，从 20min 到 25min，目标物的比响应因子降低显著，在 25min 后，基本不变。综合考虑样品数据采集时间，优化顶空摇瓶时间设定为 30min。
图 3 目标物响应值随顶空平衡时间的变化

图 4 响应值比随时间变化曲线
3.2.4 GC 分流比

配制5组STD400溶液，设置GC分流比2:1、5:1、10:1、15:1和20:1，摇瓶温度80℃和摇瓶时间30 min，在其他条件不变，优化GC分流比。

从图5和图6分别为目标物响应值和比响应因子随分流比的变化，可以看出，分流比对于各种有机物的响应值的影响不具有规律性。按照响应值和比响应因子的大小排列可知10:1>2:1>5:1>15:1>20:1，两者具有一致性。因此优化GC分流比为10:1。

3.2.5 柱流速

配制5组STD400溶液，分别改变GC柱流速1.0mL/min、1.2mL/min、1.5mL/min，设定摇瓶温度80℃、摇瓶时间30 min和分流比10:1，其他条件不变，选择最佳柱流速。

图7为不同分流比下有机物响应值曲线。可以看出，除了四氯化碳、四氯乙烯和1,1,1-三氯乙烷外，随着柱流速增大，其他挥发性卤代有机物的峰面积减小，而四氯化碳、四氯乙烯和1,1,1-三氯乙烷的峰面积绝对值较其他目标物要高50%至5倍。进行混合物分析时，常会牺牲高响应目标物的部分灵敏度来确保或提高低响应目标物的灵敏度，因此选择较低的分流比较为有利。

图8为不同分流比下有机物比响应因子变化曲线，从内标法定量原理来看，选择较高的分流比较为有利。根据色谱定量原则，目标物响应决定方法灵敏度，较高目标物的响应需要优先考虑；同时，柱流速越大，气相色谱柱需要的压强就越高，选取流速较小值，有利于柱压稳定。综合分析各种因素，优选柱流速为1.0 mL/min。
图 5 目标物响应值随分流比的变化

图 6 目标物比响应因子随分流比的变化
图 7 目标物响应值随分流比的变化

图 8 目标物比响应因子随分流比的变化

3.3 顶空试样基质优化

初始条件：在 20 mL 顶空瓶中，加入 10.00 mL 空白白水，加入 VOCs 标准溶
液、内标和替代物溶液。在此条件下控制顶空的气液比即固定液相体积为 10.00mL，考察 NaCl 和甲醇浓度对 VOCs 在气液两相的分配，优化顶空提取基质条件。

3.3.1 盐析浓度

挥发性有机物被吸附在土壤/沉积物上，在气相和固相之间达到平衡状态。由于挥发性有机物是疏水性有机物，在水中的溶解度很小，但是极易溶于甲醇，所以其在甲醇中的溶解度要比在水中大得多。在振荡接触过程中，有机化合物从固相解吸出来进入液相，在溶液中加入无机盐至一定浓度或达饱和状态，可使有机物在溶液中的溶解度降低，从而增加其在气相中的浓度。根据盐析理论，实验采用不同浓度 NaCl 溶液，对盐析效果进行比较，探寻最佳盐析剂浓度。

配制 NaCl 溶液：36%（m/V：72g 溶于水后，定容至 200mL，加热至煮沸。容量瓶底部有部分 NaCl 未溶解。实验所用的溶液为 20℃饱和溶液。）分别准确移取 NaCl 溶液 0mL、2.00mL、4.00mL、6.00mL、8.00mL、10.00 mL 于 20 mL 顶空瓶中，加入超纯水至 10mL，再加入 std400 标准溶液。

图 9 和图 10 是目标物响应值和比响应因子随 NaCl 浓度的变化。从图 9 来看，随着饱和 NaCl 溶液体积的增加，各种有机物的响应值逐渐增大。从图 10 来看，增加盐浓度，有利于提高低响应值化合物的比响应因子，但会使高响应值化合物的比响应因子降低。综合实验结果，采用饱和 NaCl 溶液作为盐析液。本研究采用在 10mL 水中加入 3.6 g NaCl。
图 9 不同 NaCl 浓度下目标物的响应值

图 10 不同 NaCl 浓度下目标物的比响应因子
3.3.2 甲醇浓度

根据相似相溶原理，有机物在甲醇中的浓度要高于水中的浓度。在测定土壤/沉积物中 VOCs 时，可使用一定浓度的甲醇作为浸提剂。但是，不同浓度的甲醇会对挥发性有机物饱和蒸汽分压产生影响。所以加入甲醇浓度并不是越高越好，而存在一个最优值。在这个条件下，甲醇浓度对有机物的响应值影响最小。

针对上述问题，本实验在最佳盐析浓度下，继续对浸提剂甲醇的浓度进行实验，优化最佳甲醇浓度。

分别准确移取 0mL、0.05mL、0.25mL、0.50mL、0.75mL、1.00mL、1.25mL 和 1.50mL 甲醇于 20mL 顶空瓶中，加入超纯水至 10mL，甲醇浓度（v/v）分别为 0、0.5%、2.5%、5.0%、7.5%、10.0%、12.5% 和 15.0%。加入 3.6g 的 NaCl 固体，配制 std400 标准溶液，在顶空最优条件下测试。

图 11 和图 12 是目标物响应值和比响应因子随甲醇浓度的变化。

从图 11 来看，甲醇的存在会降低目标物检测的灵敏度。随着甲醇浓度的增大，目标物的响应值总体呈现降低的趋势，未加甲醇时响应值最大，甲醇浓度（v/v）不超过 2.5%时，目标物的响应值接近未加甲醇时的响应值。将目标物响应值降低不超过 30%时所对应的甲醇浓度视为可接受的甲醇浓度，则顶空提取基质中甲醇的浓度应不超过 5%（v/v）。
图 11 目标物响应值随甲醇浓度的变化

图 12 目标物比响应因子随甲醇浓度的变化
图 12 是目标物的比响应因子随甲醇溶液浓度的变化，除了 1,1,1-三氯乙烷、二溴一氯甲烷和三溴甲烷的比响应因子随着甲醇浓度缓慢降低，其他目标物的三种类型的大部分有机物比响应因子基本不变或缓慢增大，这表明采用内标法定量时，这些有机物受甲醇浓度的影响较小。所有目标物的比响应因子在甲醇浓度范围为 2.5%-7.5% 时基本不变。

综合以上分析，甲醇浓度应控制在 2.5%-5% (v/v)，为了降低土壤中 VOCs 的方法检出限，增加样品取样量也是一种有效的措施，因此，确定顶空基质中甲醇浓度为 5% (v/v)，对于 10mL 的液相体积，加入样品的甲醇提取液最大值为 0.50 mL。

3.4 方法性能指标

3.4.1 标准曲线范围

标准系列的制备：20 mL 顶空瓶中，加入 3.6 g NaCl 固体，加入 9.50 mL 空白水和 0.50 mL 甲醇，VOCs、内标和替代物标准溶液按照表 2 加入。结果表明，在浓度范围为 80 μg/L -4000 μg/L，各目标物的线性回归系数 >0.99 (表 3)。

<table>
<thead>
<tr>
<th>组分</th>
<th>浓度/ (μg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>80</td>
</tr>
<tr>
<td>中间液体积 (20μg/mL) µL</td>
<td>40</td>
</tr>
<tr>
<td>中间液体积 (200μg/mL) µL</td>
<td>10</td>
</tr>
<tr>
<td>VOC标准溶液 (2000μg/mL) µL</td>
<td>10</td>
</tr>
<tr>
<td>IS+SS (200μg/L) µL</td>
<td>20</td>
</tr>
</tbody>
</table>
表 3 16 种组分的工作曲线拟合

<table>
<thead>
<tr>
<th>组分</th>
<th>回归方程</th>
<th>相关系数 R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>二氯甲烷</td>
<td>$y = 0.200x$</td>
<td>0.999</td>
</tr>
<tr>
<td>三氯甲烷</td>
<td>$y = 0.511x$</td>
<td>0.999</td>
</tr>
<tr>
<td>四氯化碳</td>
<td>$y = 0.971x$</td>
<td>0.998</td>
</tr>
<tr>
<td>氯乙烯</td>
<td>$y = 0.435x$</td>
<td>0.999</td>
</tr>
<tr>
<td>1,1-二氯乙烯</td>
<td>$y = 0.483x$</td>
<td>0.998</td>
</tr>
<tr>
<td>反-1,2-二氯乙烯</td>
<td>$y = 0.430x$</td>
<td>0.998</td>
</tr>
<tr>
<td>顺-1,2-二氯乙烯</td>
<td>$y = 0.303x$</td>
<td>0.998</td>
</tr>
<tr>
<td>三氯乙烯</td>
<td>$y = 0.865x$</td>
<td>0.998</td>
</tr>
<tr>
<td>四氯乙烯</td>
<td>$y = 0.946x$</td>
<td>0.997</td>
</tr>
<tr>
<td>1,2-二氯乙烷</td>
<td>$y = 0.158x$</td>
<td>0.999</td>
</tr>
<tr>
<td>1,2-二氯丙烷</td>
<td>$y = 0.172x$</td>
<td>0.999</td>
</tr>
<tr>
<td>1,1,1-三氯乙烷</td>
<td>$y = 0.804x$</td>
<td>0.999</td>
</tr>
<tr>
<td>1,1,2-三氯乙烷</td>
<td>$y = 0.0932x$</td>
<td>0.999</td>
</tr>
<tr>
<td>一溴二氯甲烷</td>
<td>$y = 0.286x$</td>
<td>0.999</td>
</tr>
<tr>
<td>二溴一氯甲烷</td>
<td>$y = 0.199x$</td>
<td>0.999</td>
</tr>
<tr>
<td>三溴甲烷</td>
<td>$y = 0.134x$</td>
<td>0.999</td>
</tr>
</tbody>
</table>

3.4.2 方法检出限和定量限

分别配制 7 个 std80 标准样品，测定 7 个样品的浓度，计算方法检出限（MDLs）。如表 4，Average/3s 在 3-5 之间，表明用于测定 MDLs 的浓度合适。方法定量限的计算参照《土壤和沉积物挥发性有机物的测定 吹扫捕集/气相色谱-质谱法》(HJ605-2011)，取方法检出限的 4 倍。
表4 方法检出限和定量限

<table>
<thead>
<tr>
<th>组分</th>
<th>C_1 (μg/L)</th>
<th>3S</th>
<th>方法检出限 (μg/g)</th>
<th>方法定量限 (μg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>氯乙烯</td>
<td>92.11</td>
<td>113.67</td>
<td>96.01</td>
<td>110.65</td>
</tr>
<tr>
<td>1,1-二氯乙烯</td>
<td>93.72</td>
<td>115.96</td>
<td>96.88</td>
<td>111.66</td>
</tr>
<tr>
<td>二氯甲烷</td>
<td>79.42</td>
<td>95.24</td>
<td>87.14</td>
<td>95.05</td>
</tr>
<tr>
<td>反-1,2-二氯乙烯</td>
<td>92.40</td>
<td>110.51</td>
<td>95.88</td>
<td>108.65</td>
</tr>
<tr>
<td>顺-1,2-二氯乙烯</td>
<td>97.51</td>
<td>104.61</td>
<td>91.14</td>
<td>104.35</td>
</tr>
<tr>
<td>三氯甲烷</td>
<td>75.58</td>
<td>93.40</td>
<td>80.38</td>
<td>92.68</td>
</tr>
<tr>
<td>1,2-二氯乙烯</td>
<td>82.69</td>
<td>98.08</td>
<td>86.85</td>
<td>96.83</td>
</tr>
<tr>
<td>1,1,1-三氯乙烷</td>
<td>79.03</td>
<td>97.60</td>
<td>84.08</td>
<td>96.14</td>
</tr>
<tr>
<td>四氯化碳</td>
<td>90.76</td>
<td>113.21</td>
<td>97.05</td>
<td>111.15</td>
</tr>
<tr>
<td>1,2-二氯丙烷</td>
<td>77.17</td>
<td>91.54</td>
<td>80.25</td>
<td>91.54</td>
</tr>
<tr>
<td>三氯乙烯</td>
<td>76.72</td>
<td>98.23</td>
<td>80.68</td>
<td>95.08</td>
</tr>
<tr>
<td>一溴二氯甲烷</td>
<td>72.59</td>
<td>88.16</td>
<td>77.26</td>
<td>89.69</td>
</tr>
<tr>
<td>1,1,2-三氯乙烷</td>
<td>72.91</td>
<td>85.80</td>
<td>73.96</td>
<td>84.96</td>
</tr>
<tr>
<td>二溴一氯甲烷</td>
<td>73.67</td>
<td>87.59</td>
<td>78.91</td>
<td>90.06</td>
</tr>
<tr>
<td>四氯乙烯</td>
<td>80.67</td>
<td>99.21</td>
<td>85.35</td>
<td>97.28</td>
</tr>
<tr>
<td>三溴甲烷</td>
<td>71.91</td>
<td>84.59</td>
<td>75.33</td>
<td>85.74</td>
</tr>
</tbody>
</table>

3.4.3 方法精密度和回收率

对标准土壤样品 GSS-13 进行加标回收试验。取两组顶空瓶每组 7 个，加入在 2.00 g 标准土壤样品，目标物加标浓度为 0.10 μg/g 和 20.00 μg/g (未添加氯乙烯)，0.10 μg/g 加标土壤的 RSD 在 1.26% - 9.14% 之间，除三溴甲烷
回收率偏低外，回收率范围 70.58% ~ 119.73%; 20 μg/g 加标土壤 RSD%在 1.62% ~ 25.12%之间，除了四氯乙烯回收率异常外，其他组分回收率范围 80.29% ~ 113.17%，分析原因为，GSS-13 中含有还原性铁的矿物，可以使 1,1,2,2-四氯乙烷及四氯乙烯还原为三氯乙烯，从四氯乙烯的回收率 (48.32%) 和三氯乙烯的回收率 (155.17%) 之和可以佐证，但需进一步研究证实。

从精密度和回收率测试结果可以看出，所有的挥发性有机物的相对标准偏差较小，精密度良好（表 5）。

表 5 土壤加标回收率与精密度

<table>
<thead>
<tr>
<th>化合物名称</th>
<th>标准浓度 (0.1 μg·g⁻¹)</th>
<th>标准浓度 (20 μg·g⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>平均回收率 (%)</td>
<td>RSD (%)</td>
</tr>
<tr>
<td>1,1-二氯乙烯</td>
<td>119.73</td>
<td>2.88</td>
</tr>
<tr>
<td>二氯甲烷</td>
<td>91.14</td>
<td>2.51</td>
</tr>
<tr>
<td>反-1,2-二氯乙烯</td>
<td>102.3</td>
<td>1.51</td>
</tr>
<tr>
<td>顺-1,2-二氯乙烯</td>
<td>106.59</td>
<td>2.32</td>
</tr>
<tr>
<td>三氯甲烷</td>
<td>101.47</td>
<td>1.3</td>
</tr>
<tr>
<td>1,2-二氯乙烷</td>
<td>93.39</td>
<td>4.78</td>
</tr>
<tr>
<td>1,1,1-三氯乙烷</td>
<td>96.88</td>
<td>2.47</td>
</tr>
<tr>
<td>四氯化碳</td>
<td>92.9</td>
<td>3.28</td>
</tr>
<tr>
<td>1,2-二氯丙烷</td>
<td>96.4</td>
<td>2.56</td>
</tr>
<tr>
<td>三氯乙烯</td>
<td>166.93</td>
<td>2.43</td>
</tr>
<tr>
<td>一溴二氯甲烷</td>
<td>81.2</td>
<td>2.94</td>
</tr>
<tr>
<td>1,1,2-三氯乙烷</td>
<td>85.98</td>
<td>4.68</td>
</tr>
<tr>
<td>二溴一氯甲烷</td>
<td>70.58</td>
<td>3.83</td>
</tr>
<tr>
<td>四氯乙烯</td>
<td>89.01</td>
<td>2.89</td>
</tr>
<tr>
<td>三溴甲烷</td>
<td>58.75</td>
<td>5.06</td>
</tr>
</tbody>
</table>
3.5 土壤样品提取方法

3.5.1 甲醇提取样品方式

根据4.3.2，顶空试样基质中适宜的甲醇浓度为2.5%-5.0%，以下实验研究甲醇提取样品的方式。采用2.5%-5.0%的甲醇水溶液在顶空瓶内提取后直接上机测试，和采用纯甲醇提取后分取提取液制备顶空试样上机测试进行对比。

提取方式1: 称取2g土壤标准物质和3.6gNaCl于20mL顶空瓶中，加入10mL2.5%甲醇水溶液，压盖；

提取方式2: 称取2g土壤标准物质和3.6gNaCl于20mL顶空瓶中，加入10mL5.0%甲醇水溶液，压盖；

提取方式3: 称取2g土壤标准物质于20mL顶空瓶中，加入4mL纯甲醇，压盖；

上述3种方式的样品在25℃、175转/min条件下振荡提取60min后静置平衡，样品1和样品2直接上机测试；取0.50mL样品3的上清液于装有9.50mL水和3.6gNaCl的20mL顶空瓶中，上机测试，结果如表6所示。

表6 甲醇浓度对挥发性有机物提取效果影响（mg/kg）

<table>
<thead>
<tr>
<th>化合物种类</th>
<th>名称</th>
<th>样品1</th>
<th>样品2</th>
<th>样品3</th>
<th>认定值</th>
<th>置信区间</th>
<th>预测变化区间</th>
</tr>
</thead>
<tbody>
<tr>
<td>烷烃类</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>二氯甲烷</td>
<td>1.44</td>
<td>1.44</td>
<td>2.69</td>
<td>0.85</td>
<td>0.641 - 1.06</td>
<td>0.00 - 1.78</td>
</tr>
<tr>
<td></td>
<td>三氯甲烷</td>
<td>4.57</td>
<td>5.61</td>
<td>4.26</td>
<td>6.39</td>
<td>5.95 - 6.84</td>
<td>3.88 - 8.90</td>
</tr>
<tr>
<td></td>
<td>1,2-二氯乙烷</td>
<td>3.53</td>
<td>4.75</td>
<td>2.99</td>
<td>3.86</td>
<td>3.55 - 4.16</td>
<td>2.23 - 5.48</td>
</tr>
<tr>
<td></td>
<td>四氯化碳</td>
<td>1.34</td>
<td>0.89</td>
<td>0.00</td>
<td>5.13</td>
<td>4.64 - 5.61</td>
<td>2.36 - 7.89</td>
</tr>
<tr>
<td></td>
<td>1,2-二氯丙烷</td>
<td>5.18</td>
<td>5.47</td>
<td>4.79</td>
<td>6.01</td>
<td>5.63 - 6.39</td>
<td>3.92 - 8.10</td>
</tr>
<tr>
<td></td>
<td>一溴二氯甲烷</td>
<td>3.02</td>
<td>3.74</td>
<td>3.77</td>
<td>4.82</td>
<td>4.50 - 5.14</td>
<td>3.11 - 6.53</td>
</tr>
<tr>
<td></td>
<td>1,1,2-三氯乙烷</td>
<td>二溴一氯甲烷</td>
<td>1,2-二溴乙烷</td>
<td>三溴甲烷</td>
<td>1,1,2,2-四氯乙烷</td>
<td>1,2,3-三氯丙烷</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>----------------</td>
<td>--------------</td>
<td>--------------</td>
<td>----------</td>
<td>-----------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>统计值</td>
<td>9.51</td>
<td>2.07</td>
<td>3.30</td>
<td>2.02</td>
<td>3.36</td>
<td>11.45</td>
<td></td>
</tr>
<tr>
<td>95%置信区间</td>
<td>8.88 - 7.26</td>
<td>3.34 - 3.67</td>
<td>3.58 - 3.21</td>
<td>3.30</td>
<td>3.72 - 5.90</td>
<td>8.00 - 8.39</td>
<td></td>
</tr>
<tr>
<td>95%置信区间</td>
<td>8.11 - 6.44</td>
<td>3.43 - 3.91</td>
<td>5.35 - 4.03</td>
<td>3.90</td>
<td>7.35 - 6.44</td>
<td>2.95 - 8.84</td>
<td></td>
</tr>
<tr>
<td>95%置信区间</td>
<td>5.85 - 4.95</td>
<td>2.09 - 5.16</td>
<td>2.59 - 5.02</td>
<td>2.09</td>
<td>2.95 - 8.44</td>
<td>2.91 - 13.9</td>
<td></td>
</tr>
<tr>
<td>95%置信区间</td>
<td>11.4 - 9.11</td>
<td>3.81 - 2.38</td>
<td>5.11 - 3.90</td>
<td>2.95</td>
<td>8.84 - 5.91</td>
<td>5.11 - 13.9</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>烯烃类</th>
<th>1,1-二氯乙烯</th>
<th>三氯乙烯</th>
<th>苯乙烯</th>
</tr>
</thead>
<tbody>
<tr>
<td>统计值</td>
<td>0.60</td>
<td>2.12</td>
<td>1.47</td>
</tr>
<tr>
<td>95%置信区间</td>
<td>1.96 - 0.18</td>
<td>2.90 - 2.68</td>
<td>1.16 - 3.43</td>
</tr>
<tr>
<td>95%置信区间</td>
<td>12.10 - 4.35</td>
<td>(0.697)</td>
<td>6.03 - 4.39</td>
</tr>
<tr>
<td>95%置信区间</td>
<td>10.6 - 3.91</td>
<td>6.39 - 8.39</td>
<td>6.75 - 8.39</td>
</tr>
<tr>
<td>95%置信区间</td>
<td>13.5 - 19.8</td>
<td>6.51 - 18.8</td>
<td>7.23 - 10.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>饱和芳香烃类</th>
<th>苯</th>
<th>甲苯</th>
<th>氯苯</th>
<th>乙苯</th>
<th>间+对二甲苯</th>
<th>苯乙烯</th>
<th>邻二甲苯</th>
<th>溴苯</th>
<th>1,3,5-三甲苯</th>
<th>1,2,4-三甲苯</th>
<th>邻二氯苯</th>
</tr>
</thead>
<tbody>
<tr>
<td>统计值</td>
<td>4.07</td>
<td>3.38</td>
<td>3.63</td>
<td>3.08</td>
<td>1.12</td>
<td>1.47</td>
<td>3.49</td>
<td>4.17</td>
<td>2.91</td>
<td>4.09</td>
<td>3.34</td>
</tr>
<tr>
<td>95%置信区间</td>
<td>4.35 - 4.13</td>
<td>2.34 - 2.94</td>
<td>2.71 - 3.72</td>
<td>1.67 - 6.84</td>
<td>0.67 - 3.01</td>
<td>1.16 - 3.43</td>
<td>2.00 - 7.27</td>
<td>3.34 - 7.85</td>
<td>1.07 - 11.00</td>
<td>1.91 - 16.55</td>
<td>2.36</td>
</tr>
<tr>
<td>95%置信区间</td>
<td>7.75 - 7.24</td>
<td>5.61 - 4.69</td>
<td>7.02 - 5.75</td>
<td>7.63 - 7.23</td>
<td>6.16 - 6.03</td>
<td>6.39 - 6.03</td>
<td>8.24 - 7.83</td>
<td>9.40 - 8.77</td>
<td>11.70 - 10.9</td>
<td>18.00 - 16.9</td>
<td>10.1</td>
</tr>
</tbody>
</table>

统计样品各测量值在其置信区间和预测变化区间的分布（图13），同样的实验条件下，2.5%甲醇提取与5%甲醇提取效果差别不大。2.5%和5%甲醇提取尚有数个烷烃类可以达到给定预测变化范围，烯烃和苯类化合物均不能达到给定参考范围，但是纯甲醇提取大部分苯类化合物可以达到给定范围。纯甲醇提取效果明显优于2.5%和5%甲醇提取。因此，选用提取方式3，利用纯甲醇振荡提取。
取5.00 g土壤标准物质CRM628-30，加入5.00 mL甲醇，在温度为25℃、175转/min条件下振荡提取30min，按照该标准物质的定值方法——吹扫捕集-GC-MS方法进行振荡提取实验，取部分甲醇提取液稀释后进行吹扫捕集-GC-MS测定。

卤代烃的结果如表7所示，除了四氯化碳和三溴甲烷的测定值超出该标准物质的可预期区间，其他卤代烃的测定值都在该标准物质证书提供的可预测区间内，说明选用的振荡提取条件满足要求。

因此，将振荡提取条件定为“在温度为25℃、175转/min条件下振荡提取30min”，不再继续优化。
表 7 土壤标准物质振荡提取吹扫捕集-GC-MS 测定结果（mg/kg）

<table>
<thead>
<tr>
<th>有机物</th>
<th>测定值</th>
<th>认定值</th>
<th>置信区间</th>
<th>预测的变化区间</th>
</tr>
</thead>
<tbody>
<tr>
<td>二氯甲烷</td>
<td>1.55</td>
<td>0.850</td>
<td>0.641 - 1.06</td>
<td>0.00 - 1.78</td>
</tr>
<tr>
<td>三氯甲烷</td>
<td>5.35</td>
<td>6.39</td>
<td>5.95 - 6.84</td>
<td>3.88 - 8.90</td>
</tr>
<tr>
<td>四氯化碳</td>
<td>1.96</td>
<td>5.13</td>
<td>4.64 - 5.61</td>
<td>2.36 - 7.89</td>
</tr>
<tr>
<td>一溴二氯甲烷</td>
<td>3.60</td>
<td>4.82</td>
<td>4.50 - 5.14</td>
<td>3.11 - 6.53</td>
</tr>
<tr>
<td>二溴一氯甲烷</td>
<td>2.49</td>
<td>3.67</td>
<td>3.43 - 3.91</td>
<td>2.38 - 4.95</td>
</tr>
<tr>
<td>三溴甲烷</td>
<td>2.06</td>
<td>3.62</td>
<td>3.35 - 3.90</td>
<td>2.09 - 5.16</td>
</tr>
<tr>
<td>1,1,2-三氯乙烷</td>
<td>7.04</td>
<td>8.61</td>
<td>8.11 - 9.11</td>
<td>5.85 - 11.4</td>
</tr>
<tr>
<td>1,1-二氯乙烯</td>
<td>6.84</td>
<td>12.1</td>
<td>10.6 - 13.5</td>
<td>4.35 - 19.8</td>
</tr>
<tr>
<td>1,2-二氯乙烷</td>
<td>3.18</td>
<td>3.86</td>
<td>3.55 - 4.16</td>
<td>2.23 - 5.48</td>
</tr>
<tr>
<td>1,2-二氯丙烷</td>
<td>5.27</td>
<td>6.01</td>
<td>5.63 - 6.39</td>
<td>3.92 - 8.10</td>
</tr>
<tr>
<td>三氯乙烯</td>
<td>0.91</td>
<td>(0.697)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3-三氯丙烷</td>
<td>7.38</td>
<td>8.39</td>
<td>7.35 - 9.44</td>
<td>2.91 - 13.9</td>
</tr>
<tr>
<td>1,1,2,2-四氯乙烷</td>
<td>4.12</td>
<td>5.90</td>
<td>5.35 - 6.44</td>
<td>2.95 - 8.84</td>
</tr>
<tr>
<td>1,2-二溴乙烷</td>
<td>2.69</td>
<td>3.80</td>
<td>3.58 - 4.03</td>
<td>2.59 - 5.02</td>
</tr>
</tbody>
</table>

3.5.3 振荡提取的液固比

同时为了保证后续顶空测试方法实验研究的可靠性和可操作性，将振荡提取的液固比适当提高，取 2.0 g 土壤标准物质 CRM628-30 加入 2.00mL 和 4.00 mL 甲醇进行振荡提取后，取 0.50 mL 上清液进行顶空-GC-MS 测试。

结果如表 8，液固比 2:1 和液固比 1:1 的提取效果之间基本没有差异。而三氯乙烯、四氯化碳和 1,1-二氯乙烯的提取率异常，应和该标准物质的瓶间均匀性（与 4.5.1 节所用非同一瓶）和稳定性有关。

表 8 不同液固比对挥发性有机物提取的效果影响（mg/kg）

<table>
<thead>
<tr>
<th>名称</th>
<th>液固比 2:1</th>
<th>液固比 1:1</th>
<th>认定值</th>
<th>置信区间</th>
<th>预测的变化区间</th>
</tr>
</thead>
<tbody>
<tr>
<td>二氯甲烷</td>
<td>2.69</td>
<td>2.95</td>
<td>0.85</td>
<td>0.641 - 1.06</td>
<td>0.00 - 1.78</td>
</tr>
<tr>
<td>三氯甲烷</td>
<td>4.26</td>
<td>3.61</td>
<td>6.39</td>
<td>5.95 - 6.84</td>
<td>3.88 - 8.90</td>
</tr>
<tr>
<td></td>
<td>2.99</td>
<td>3.08</td>
<td>3.86</td>
<td>3.55 - 4.16</td>
<td>2.23 - 5.48</td>
</tr>
<tr>
<td>--------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>1,2-二氯乙烷</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>四氯化碳</td>
<td>未检出</td>
<td>未检出</td>
<td>5.13</td>
<td>4.64 - 5.61</td>
<td>2.36 - 7.89</td>
</tr>
<tr>
<td>1,2-二氯丙烷</td>
<td>4.79</td>
<td>4.67</td>
<td>6.01</td>
<td>5.63 - 6.39</td>
<td>3.92 - 8.10</td>
</tr>
<tr>
<td>一溴二氯甲烷</td>
<td>3.77</td>
<td>3.56</td>
<td>4.82</td>
<td>4.50 - 5.14</td>
<td>3.11 - 6.53</td>
</tr>
<tr>
<td>1,1,2-三氯乙烷</td>
<td>7.26</td>
<td>6.33</td>
<td>8.61</td>
<td>8.11 - 9.11</td>
<td>5.85 - 11.4</td>
</tr>
<tr>
<td>二溴一氯甲烷</td>
<td>3.34</td>
<td>3.00</td>
<td>3.67</td>
<td>3.43 - 3.91</td>
<td>2.38 - 4.95</td>
</tr>
<tr>
<td>三溴甲烷</td>
<td>3.30</td>
<td>3.42</td>
<td>3.62</td>
<td>3.35 - 3.90</td>
<td>2.09 - 5.16</td>
</tr>
<tr>
<td>1,1-二氯乙烯</td>
<td>0.18</td>
<td>1.00</td>
<td>12.10</td>
<td>10.6 - 13.5</td>
<td>4.35 - 19.8</td>
</tr>
<tr>
<td>三氯乙烯</td>
<td>2.68</td>
<td>4.16</td>
<td>(0.697)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.6 实验方法

3.6.1 仪器测量条件

(1) 顶空条件

- 载气压力: 16.6 psi; 载气: 99.999% He; 瓶区温度: 80 ℃; LOOP 环温度: 90 ℃; 传输线温度: 150 ℃; GC 圈环时间: 45.00 min; 摇瓶时间: 30.00 min; 加压时间: 0.08 min; LOOP 环充满时间: 0.50 min; LOOP 环平衡时间: 0.15 min; 注射时间: 1.00 min。

（2）GC 条件

- 载气: 99.999% He; 柱流速: 1.00 mL/min; 进样口温度: 150 ℃; 接口温度: 235℃; 进样口温度: 150 ℃; 分流比: 10:1。柱温: 初始 40℃保持 5min, 以 6℃/min 的速度升温至 140℃, 再以 5℃/min 的速度升至 210℃。

（3）MS 条件

- EI 离子源, 70 eV; 离子源温度: 230 ℃; 四极杆温度: 150 ℃; 扫描方式: SIM; 溶剂延迟: 5.00 min。

3.6.2 标准系列制备

标准系列的制备: 20 mL 顶空瓶中, 加入 3.6 g NaCl 固体, 加入 9.50 mL
空白水和 0.50 mL 甲醇，加入卤代烃标准溶液、内标和替代物标准溶液。

3.6.3 试样制备

取 2.0 g -2.5g 土壤样品加入 4.00 mL 甲醇，在温度为 25 ℃、175 转/min 条件下振荡提取 30min 后，取不超过 0.50 mL 土壤样品的甲醇提取液于预先装有 9.50mL 水和 3.6g NaCl 的 20mL 顶空瓶中，补加甲醇至 0.50 mL，加入内标标准溶液，压盖。未能及时分析的试样于 4 ℃保存。

3.7 精密度实验

邀请 6 家测试单位按照 3.6 节的实验方法，进行准确度和精密度实验，分别用 Lab1、Lab2、Lab3、Lab4、Lab5 和 Lab6。

为了消除实际土壤基质的影响，采用石英砂代替土壤样品，按照 4.6.3 制备基质加标样品。取 2.50 g 石英砂于样品瓶中，加入 4.00 mL 甲醇，分别加入 54 种 VOCs 标准溶液，在温度为 25 ℃、175 转/min 条件下振荡提取 30min 后，取 0.50 mL 甲醇提取液于预先装有 9.50mL 水和 3.6g NaCl 的 20mL 顶空瓶中，加入内标标准溶液，压盖。对应样品基质加标浓度分别为基质加标 1:2.56 μg/g、基质加标 2:6.40 μg/g、基质加标 3:12.80 μg/g 和基质加标 4:25.60 μg/g。

对各水平的实验结果，分别首先采用柯克伦检验，实验室间未发现歧离值和离群值，不再采用格拉布斯检验对实验室内数据进行离群值剔除。统计 15 个组分各水平的总平均值、实验室间相对标准偏差（%）、重复性 S_r、再现性 S_a，如表 9-表 24 所示；建立重复性 S_r、再现性 S_a 和 m 的依赖关系，线性回归相关性显著，可用 S=a+bm 来描述（图 14-图 29）。
表 9 二氯甲烷的测量值和重复性 S_r 及再现性 S_r 估计

<table>
<thead>
<tr>
<th>实验室</th>
<th>基质加标 1 (μg/g)</th>
<th>基质加标 2 (μg/g)</th>
<th>基质加标 3 (μg/g)</th>
<th>基质加标 4 (μg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab 1</td>
<td>2.589</td>
<td>6.422</td>
<td>12.802</td>
<td>25.145</td>
</tr>
<tr>
<td></td>
<td>3.030</td>
<td>5.202</td>
<td>13.954</td>
<td>20.368</td>
</tr>
<tr>
<td></td>
<td>3.004</td>
<td>5.652</td>
<td>13.442</td>
<td>22.631</td>
</tr>
<tr>
<td></td>
<td>1.994</td>
<td>7.000</td>
<td>13.314</td>
<td>28.414</td>
</tr>
<tr>
<td>Lab 2</td>
<td>2.520</td>
<td>6.252</td>
<td>12.669</td>
<td>25.433</td>
</tr>
<tr>
<td></td>
<td>2.420</td>
<td>7.502</td>
<td>12.922</td>
<td>24.924</td>
</tr>
<tr>
<td></td>
<td>2.722</td>
<td>6.940</td>
<td>13.176</td>
<td>30.265</td>
</tr>
<tr>
<td></td>
<td>2.823</td>
<td>6.065</td>
<td>11.782</td>
<td>20.600</td>
</tr>
<tr>
<td>Lab 3</td>
<td>2.808</td>
<td>7.607</td>
<td>14.106</td>
<td>27.879</td>
</tr>
<tr>
<td></td>
<td>2.695</td>
<td>8.748</td>
<td>13.119</td>
<td>22.303</td>
</tr>
<tr>
<td></td>
<td>3.201</td>
<td>8.368</td>
<td>13.965</td>
<td>32.340</td>
</tr>
<tr>
<td></td>
<td>3.397</td>
<td>8.520</td>
<td>15.094</td>
<td>31.503</td>
</tr>
<tr>
<td>Lab 4</td>
<td>2.788</td>
<td>6.253</td>
<td>12.353</td>
<td>28.851</td>
</tr>
<tr>
<td></td>
<td>2.788</td>
<td>5.315</td>
<td>11.241</td>
<td>34.044</td>
</tr>
<tr>
<td></td>
<td>2.259</td>
<td>6.066</td>
<td>13.712</td>
<td>33.178</td>
</tr>
<tr>
<td>Lab 5</td>
<td>2.697</td>
<td>6.481</td>
<td>15.157</td>
<td>25.449</td>
</tr>
<tr>
<td></td>
<td>2.616</td>
<td>7.129</td>
<td>18.037</td>
<td>23.668</td>
</tr>
<tr>
<td></td>
<td>3.344</td>
<td>6.610</td>
<td>17.885</td>
<td>27.994</td>
</tr>
<tr>
<td>Lab 6</td>
<td>2.461</td>
<td>6.333</td>
<td>13.692</td>
<td>25.504</td>
</tr>
<tr>
<td></td>
<td>2.018</td>
<td>5.763</td>
<td>14.377</td>
<td>24.229</td>
</tr>
<tr>
<td></td>
<td>2.338</td>
<td>6.397</td>
<td>13.692</td>
<td>30.350</td>
</tr>
<tr>
<td></td>
<td>2.436</td>
<td>7.157</td>
<td>12.323</td>
<td>29.585</td>
</tr>
<tr>
<td>柯克伦统计值 C</td>
<td>0.375</td>
<td>0.329</td>
<td>0.521</td>
<td>0.259</td>
</tr>
<tr>
<td>总平均值 (μg/g)</td>
<td>2.678</td>
<td>6.707</td>
<td>13.790</td>
<td>26.730</td>
</tr>
<tr>
<td>实验室间相对标准偏差（%）</td>
<td>8.71</td>
<td>12.87</td>
<td>9.49</td>
<td>9.54</td>
</tr>
<tr>
<td>重复性 S_r (μg/g)</td>
<td>0.323</td>
<td>0.569</td>
<td>1.149</td>
<td>3.664</td>
</tr>
<tr>
<td>再现性 S_r (μg/g)</td>
<td>0.364</td>
<td>0.994</td>
<td>1.644</td>
<td>4.070</td>
</tr>
<tr>
<td>实验室</td>
<td>基质加标 1（μg/g）</td>
<td>基质加标 2（μg/g）</td>
<td>基质加标 3（μg/g）</td>
<td>基质加标 4（μg/g）</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Lab 1</td>
<td>2.570</td>
<td>6.444</td>
<td>12.662</td>
<td>25.190</td>
</tr>
<tr>
<td></td>
<td>2.468</td>
<td>6.702</td>
<td>11.649</td>
<td>29.724</td>
</tr>
<tr>
<td></td>
<td>2.031</td>
<td>7.411</td>
<td>13.928</td>
<td>26.198</td>
</tr>
<tr>
<td></td>
<td>2.313</td>
<td>6.702</td>
<td>14.435</td>
<td>29.220</td>
</tr>
<tr>
<td>Lab 2</td>
<td>2.530</td>
<td>6.296</td>
<td>12.687</td>
<td>25.477</td>
</tr>
<tr>
<td></td>
<td>3.138</td>
<td>5.541</td>
<td>14.463</td>
<td>27.515</td>
</tr>
<tr>
<td></td>
<td>2.378</td>
<td>6.233</td>
<td>11.165</td>
<td>26.751</td>
</tr>
<tr>
<td></td>
<td>2.480</td>
<td>7.052</td>
<td>14.463</td>
<td>29.554</td>
</tr>
<tr>
<td>Lab 3</td>
<td>2.738</td>
<td>7.329</td>
<td>14.218</td>
<td>27.982</td>
</tr>
<tr>
<td></td>
<td>3.094</td>
<td>7.548</td>
<td>11.943</td>
<td>32.739</td>
</tr>
<tr>
<td></td>
<td>3.121</td>
<td>7.329</td>
<td>12.228</td>
<td>30.220</td>
</tr>
<tr>
<td></td>
<td>2.738</td>
<td>6.964</td>
<td>11.943</td>
<td>28.262</td>
</tr>
<tr>
<td>Lab 4</td>
<td>2.721</td>
<td>6.180</td>
<td>12.154</td>
<td>28.221</td>
</tr>
<tr>
<td></td>
<td>2.830</td>
<td>5.871</td>
<td>12.883</td>
<td>32.172</td>
</tr>
<tr>
<td></td>
<td>2.694</td>
<td>7.293</td>
<td>13.855</td>
<td>29.350</td>
</tr>
<tr>
<td></td>
<td>3.102</td>
<td>6.984</td>
<td>9.966</td>
<td>32.736</td>
</tr>
<tr>
<td>Lab 5</td>
<td>2.706</td>
<td>6.264</td>
<td>11.653</td>
<td>29.057</td>
</tr>
<tr>
<td></td>
<td>3.193</td>
<td>6.640</td>
<td>13.518</td>
<td>33.125</td>
</tr>
<tr>
<td></td>
<td>2.463</td>
<td>5.199</td>
<td>12.003</td>
<td>26.442</td>
</tr>
<tr>
<td></td>
<td>3.274</td>
<td>7.329</td>
<td>13.634</td>
<td>25.861</td>
</tr>
<tr>
<td>Lab 6</td>
<td>2.674</td>
<td>6.562</td>
<td>13.922</td>
<td>25.893</td>
</tr>
<tr>
<td></td>
<td>3.236</td>
<td>7.152</td>
<td>15.314</td>
<td>28.223</td>
</tr>
<tr>
<td></td>
<td>2.166</td>
<td>5.446</td>
<td>13.783</td>
<td>26.928</td>
</tr>
<tr>
<td></td>
<td>3.289</td>
<td>6.496</td>
<td>13.783</td>
<td>24.598</td>
</tr>
<tr>
<td>柯克伦统计值 C</td>
<td>0.409</td>
<td>0.336</td>
<td>0.283</td>
<td>0.356</td>
</tr>
<tr>
<td>总平均值（μg/g）</td>
<td>2.748</td>
<td>6.624</td>
<td>13.011</td>
<td>28.393</td>
</tr>
<tr>
<td>实验室间相对标准偏差（%）</td>
<td>8.12</td>
<td>5.72</td>
<td>5.31</td>
<td>5.62</td>
</tr>
<tr>
<td>重复性 S_r（μg/g）</td>
<td>0.338</td>
<td>0.626</td>
<td>1.268</td>
<td>2.265</td>
</tr>
<tr>
<td>再现性 S_R（μg/g）</td>
<td>0.368</td>
<td>0.661</td>
<td>1.297</td>
<td>2.528</td>
</tr>
<tr>
<td>实验室</td>
<td>基质加标 1 (μg/g)</td>
<td>基质加标 2 (μg/g)</td>
<td>基质加标 3 (μg/g)</td>
<td>基质加标 4 (μg/g)</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Lab 1</td>
<td>2.483</td>
<td>6.321</td>
<td>12.632</td>
<td>24.825</td>
</tr>
<tr>
<td></td>
<td>3.079</td>
<td>5.373</td>
<td>12.126</td>
<td>25.818</td>
</tr>
<tr>
<td></td>
<td>2.110</td>
<td>7.458</td>
<td>13.895</td>
<td>25.073</td>
</tr>
<tr>
<td></td>
<td>2.905</td>
<td>5.499</td>
<td>15.158</td>
<td>29.045</td>
</tr>
<tr>
<td>Lab 2</td>
<td>2.555</td>
<td>6.328</td>
<td>12.794</td>
<td>25.379</td>
</tr>
<tr>
<td></td>
<td>3.116</td>
<td>7.024</td>
<td>10.747</td>
<td>26.140</td>
</tr>
<tr>
<td></td>
<td>2.529</td>
<td>5.759</td>
<td>12.794</td>
<td>25.125</td>
</tr>
<tr>
<td></td>
<td>2.529</td>
<td>7.594</td>
<td>12.794</td>
<td>22.333</td>
</tr>
<tr>
<td>Lab 3</td>
<td>2.384</td>
<td>6.260</td>
<td>12.980</td>
<td>27.692</td>
</tr>
<tr>
<td></td>
<td>2.741</td>
<td>6.511</td>
<td>14.278</td>
<td>32.399</td>
</tr>
<tr>
<td></td>
<td>1.907</td>
<td>7.074</td>
<td>14.278</td>
<td>26.030</td>
</tr>
<tr>
<td></td>
<td>2.217</td>
<td>7.137</td>
<td>12.850</td>
<td>24.092</td>
</tr>
<tr>
<td>Lab 4</td>
<td>2.857</td>
<td>6.981</td>
<td>13.227</td>
<td>30.852</td>
</tr>
<tr>
<td></td>
<td>3.142</td>
<td>8.098</td>
<td>15.873</td>
<td>37.022</td>
</tr>
<tr>
<td></td>
<td>3.514</td>
<td>7.190</td>
<td>11.375</td>
<td>31.469</td>
</tr>
<tr>
<td></td>
<td>2.142</td>
<td>7.190</td>
<td>12.963</td>
<td>25.607</td>
</tr>
<tr>
<td>Lab 5</td>
<td>2.646</td>
<td>6.935</td>
<td>14.863</td>
<td>29.546</td>
</tr>
<tr>
<td></td>
<td>2.646</td>
<td>7.351</td>
<td>14.863</td>
<td>29.546</td>
</tr>
<tr>
<td></td>
<td>2.382</td>
<td>8.252</td>
<td>16.943</td>
<td>28.364</td>
</tr>
<tr>
<td></td>
<td>3.176</td>
<td>6.172</td>
<td>12.336</td>
<td>32.501</td>
</tr>
<tr>
<td>Lab 6</td>
<td>2.752</td>
<td>6.321</td>
<td>11.360</td>
<td>23.633</td>
</tr>
<tr>
<td></td>
<td>2.257</td>
<td>7.333</td>
<td>12.837</td>
<td>20.769</td>
</tr>
<tr>
<td></td>
<td>2.752</td>
<td>7.333</td>
<td>12.041</td>
<td>25.203</td>
</tr>
<tr>
<td></td>
<td>3.413</td>
<td>7.396</td>
<td>12.041</td>
<td>23.803</td>
</tr>
<tr>
<td>柯克伦统计值 C</td>
<td>0.316</td>
<td>0.306</td>
<td>0.326</td>
<td>0.459</td>
</tr>
<tr>
<td>总平均值 (μg/g)</td>
<td>2.676</td>
<td>6.870</td>
<td>13.252</td>
<td>27.165</td>
</tr>
<tr>
<td>实验室间相对标准偏差 (%)</td>
<td>7.57</td>
<td>6.32</td>
<td>7.36</td>
<td>11.24</td>
</tr>
<tr>
<td>重复性 Sr (μg/g)</td>
<td>0.422</td>
<td>0.709</td>
<td>1.349</td>
<td>2.814</td>
</tr>
<tr>
<td>再现性 Sr (μg/g)</td>
<td>0.426</td>
<td>0.752</td>
<td>1.522</td>
<td>3.907</td>
</tr>
<tr>
<td>实验室</td>
<td>基质加标 1 (μg/g)</td>
<td>基质加标 2 (μg/g)</td>
<td>基质加标 3 (μg/g)</td>
<td>基质加标 4 (μg/g)</td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
</tbody>
</table>

柯克伦统计值 C 0.459 0.303 0.403 0.307
总平均值 (μg/g) 2.684 6.382 11.786 25.487
实验室间相对标准偏差 (%) 17.24 13.19 28.99 12.49
重复性 S_r (μg/g) 0.336 0.677 1.053 2.107
再现性 S_r (μg/g) 0.547 1.026 3.536 3.669
表 13 1,1-二氯乙烯的测量值和重复性 Sr 及再现性 Sr 估计

<table>
<thead>
<tr>
<th>实验室</th>
<th>基质加标 1 (μg/g)</th>
<th>基质加标 2 (μg/g)</th>
<th>基质加标 3 (μg/g)</th>
<th>基质加标 4 (μg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab 1</td>
<td>2.338</td>
<td>5.943</td>
<td>11.918</td>
<td>23.733</td>
</tr>
<tr>
<td></td>
<td>2.455</td>
<td>6.300</td>
<td>11.918</td>
<td>18.986</td>
</tr>
<tr>
<td></td>
<td>2.619</td>
<td>6.657</td>
<td>12.752</td>
<td>23.970</td>
</tr>
<tr>
<td></td>
<td>2.362</td>
<td>6.478</td>
<td>11.441</td>
<td>26.106</td>
</tr>
<tr>
<td>Lab 2</td>
<td>2.551</td>
<td>6.237</td>
<td>12.796</td>
<td>25.375</td>
</tr>
<tr>
<td></td>
<td>2.730</td>
<td>7.422</td>
<td>13.307</td>
<td>28.167</td>
</tr>
<tr>
<td></td>
<td>2.041</td>
<td>6.486</td>
<td>12.412</td>
<td>27.152</td>
</tr>
<tr>
<td></td>
<td>2.194</td>
<td>5.052</td>
<td>11.516</td>
<td>30.197</td>
</tr>
<tr>
<td>Lab 3</td>
<td>2.524</td>
<td>7.074</td>
<td>14.006</td>
<td>29.255</td>
</tr>
<tr>
<td></td>
<td>2.272</td>
<td>8.135</td>
<td>15.547</td>
<td>23.697</td>
</tr>
<tr>
<td></td>
<td>3.105</td>
<td>7.640</td>
<td>15.547</td>
<td>28.963</td>
</tr>
<tr>
<td></td>
<td>2.524</td>
<td>8.277</td>
<td>11.205</td>
<td>33.644</td>
</tr>
<tr>
<td>Lab 4</td>
<td>2.692</td>
<td>6.514</td>
<td>12.416</td>
<td>27.867</td>
</tr>
<tr>
<td></td>
<td>3.015</td>
<td>5.407</td>
<td>10.057</td>
<td>31.768</td>
</tr>
<tr>
<td></td>
<td>2.073</td>
<td>5.863</td>
<td>13.782</td>
<td>27.309</td>
</tr>
<tr>
<td></td>
<td>2.342</td>
<td>7.361</td>
<td>11.795</td>
<td>22.851</td>
</tr>
<tr>
<td>Lab 5</td>
<td>2.267</td>
<td>6.101</td>
<td>14.059</td>
<td>25.382</td>
</tr>
<tr>
<td></td>
<td>2.721</td>
<td>4.942</td>
<td>14.761</td>
<td>25.889</td>
</tr>
<tr>
<td></td>
<td>2.653</td>
<td>6.284</td>
<td>11.950</td>
<td>24.113</td>
</tr>
<tr>
<td></td>
<td>1.927</td>
<td>5.857</td>
<td>14.340</td>
<td>24.113</td>
</tr>
<tr>
<td>Lab 6</td>
<td>2.471</td>
<td>6.133</td>
<td>11.297</td>
<td>23.225</td>
</tr>
<tr>
<td></td>
<td>2.866</td>
<td>6.439</td>
<td>10.280</td>
<td>22.296</td>
</tr>
<tr>
<td></td>
<td>2.347</td>
<td>5.397</td>
<td>12.201</td>
<td>23.922</td>
</tr>
<tr>
<td></td>
<td>2.817</td>
<td>6.868</td>
<td>12.088</td>
<td>27.638</td>
</tr>
<tr>
<td>柯克伦 统计值 C</td>
<td>0.276</td>
<td>0.340</td>
<td>0.428</td>
<td>0.336</td>
</tr>
<tr>
<td>总平均值 (μg/g)</td>
<td>2.496</td>
<td>6.453</td>
<td>12.641</td>
<td>26.067</td>
</tr>
<tr>
<td>实验室间相对标准偏差 (%)</td>
<td>4.29</td>
<td>10.55</td>
<td>8.33</td>
<td>8.66</td>
</tr>
<tr>
<td>重复性 Sr (μg/g)</td>
<td>0.319</td>
<td>0.683</td>
<td>1.278</td>
<td>2.866</td>
</tr>
<tr>
<td>再现性 Sr (μg/g)</td>
<td>0.340</td>
<td>0.902</td>
<td>1.528</td>
<td>3.355</td>
</tr>
</tbody>
</table>
表 14 反-1,2-二氯乙烯的测量值和重复性 S_r 及再现性 S_r 估计

<table>
<thead>
<tr>
<th>室</th>
<th>基质加标 1 (μg/g)</th>
<th>基质加标 2 (μg/g)</th>
<th>基质加标 3 (μg/g)</th>
<th>基质加标 4 (μg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>柯克伦统计值 C</td>
<td>0.429 0.349 0.290 0.214</td>
<td>0.419 0.711 1.629 3.096</td>
<td></td>
<td></td>
</tr>
<tr>
<td>总平均值 (μg/g)</td>
<td>2.510 6.433 12.579 26.271</td>
<td>2.819 7.81 9.30 7.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>实验室间相对标准偏差 (%)</td>
<td>12.84 7.81 9.30 7.26</td>
<td>0.309 0.581 1.309 2.815</td>
<td></td>
<td></td>
</tr>
<tr>
<td>重复性 S_r (μg/g)</td>
<td>0.429 0.349 0.290 0.214</td>
<td>2.419 0.711 1.629 3.096</td>
<td></td>
<td></td>
</tr>
<tr>
<td>再现性 S_r (μg/g)</td>
<td>0.419 0.711 1.629 3.096</td>
<td>2.819 7.81 9.30 7.26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
表 15 顺-1,2-二氯乙烯的测量值和重复性 S_r 及再现性 S_R 估计

<table>
<thead>
<tr>
<th>实验室</th>
<th>基质加标 1 (μg/g)</th>
<th>基质加标 2 (μg/g)</th>
<th>基质加标 3 (μg/g)</th>
<th>基质加标 4 (μg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab 1</td>
<td>2.498</td>
<td>6.198</td>
<td>12.318</td>
<td>24.958</td>
</tr>
<tr>
<td></td>
<td>2.523</td>
<td>5.578</td>
<td>12.934</td>
<td>27.703</td>
</tr>
<tr>
<td></td>
<td>2.823</td>
<td>7.376</td>
<td>11.086</td>
<td>26.705</td>
</tr>
<tr>
<td></td>
<td>2.248</td>
<td>7.128</td>
<td>12.688</td>
<td>27.703</td>
</tr>
<tr>
<td>Lab 2</td>
<td>2.548</td>
<td>6.315</td>
<td>12.774</td>
<td>25.523</td>
</tr>
<tr>
<td></td>
<td>2.956</td>
<td>5.241</td>
<td>11.114</td>
<td>27.565</td>
</tr>
<tr>
<td></td>
<td>2.293</td>
<td>6.757</td>
<td>11.497</td>
<td>27.565</td>
</tr>
<tr>
<td></td>
<td>2.370</td>
<td>6.504</td>
<td>13.030</td>
<td>24.502</td>
</tr>
<tr>
<td>Lab 3</td>
<td>2.647</td>
<td>7.096</td>
<td>13.970</td>
<td>28.183</td>
</tr>
<tr>
<td></td>
<td>2.065</td>
<td>7.309</td>
<td>11.315</td>
<td>32.129</td>
</tr>
<tr>
<td></td>
<td>2.038</td>
<td>6.600</td>
<td>12.014</td>
<td>29.311</td>
</tr>
<tr>
<td></td>
<td>3.071</td>
<td>8.232</td>
<td>13.551</td>
<td>30.156</td>
</tr>
<tr>
<td></td>
<td>2.747</td>
<td>7.299</td>
<td>12.006</td>
<td>31.741</td>
</tr>
<tr>
<td></td>
<td>2.992</td>
<td>5.411</td>
<td>12.749</td>
<td>28.567</td>
</tr>
<tr>
<td></td>
<td>3.128</td>
<td>5.663</td>
<td>10.769</td>
<td>26.836</td>
</tr>
<tr>
<td>Lab 5</td>
<td>2.986</td>
<td>7.463</td>
<td>17.319</td>
<td>27.867</td>
</tr>
<tr>
<td></td>
<td>2.927</td>
<td>7.388</td>
<td>18.185</td>
<td>27.588</td>
</tr>
<tr>
<td></td>
<td>2.479</td>
<td>7.090</td>
<td>17.146</td>
<td>32.326</td>
</tr>
<tr>
<td>Lab 6</td>
<td>2.648</td>
<td>6.527</td>
<td>13.355</td>
<td>25.587</td>
</tr>
<tr>
<td></td>
<td>2.727</td>
<td>5.483</td>
<td>15.492</td>
<td>30.448</td>
</tr>
<tr>
<td></td>
<td>2.277</td>
<td>5.874</td>
<td>13.488</td>
<td>24.563</td>
</tr>
<tr>
<td></td>
<td>2.463</td>
<td>7.572</td>
<td>15.625</td>
<td>25.587</td>
</tr>
<tr>
<td></td>
<td>柯克伦统计值 C</td>
<td>0.473</td>
<td>0.257</td>
<td>0.358</td>
</tr>
<tr>
<td></td>
<td>总平均值 (μg/g)</td>
<td>2.628</td>
<td>6.633</td>
<td>13.375</td>
</tr>
<tr>
<td></td>
<td>实验室间相对标准偏差 (%)</td>
<td>6.98</td>
<td>7.50</td>
<td>14.05</td>
</tr>
<tr>
<td></td>
<td>重复性 S_r (μg/g)</td>
<td>0.295</td>
<td>0.735</td>
<td>1.184</td>
</tr>
<tr>
<td></td>
<td>再现性 S_R (μg/g)</td>
<td>0.315</td>
<td>0.808</td>
<td>2.140</td>
</tr>
<tr>
<td>实验室</td>
<td>基质加标 1 (μg/g)</td>
<td>基质加标 2 (μg/g)</td>
<td>基质加标 3 (μg/g)</td>
<td>基质加标 4 (μg/g)</td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Lab 1</td>
<td>2.444</td>
<td>6.248</td>
<td>12.131</td>
<td>23.983</td>
</tr>
<tr>
<td></td>
<td>2.493</td>
<td>5.123</td>
<td>12.131</td>
<td>19.666</td>
</tr>
<tr>
<td></td>
<td>2.860</td>
<td>7.310</td>
<td>11.040</td>
<td>22.065</td>
</tr>
<tr>
<td></td>
<td>2.102</td>
<td>6.935</td>
<td>12.738</td>
<td>27.581</td>
</tr>
<tr>
<td>Lab 2</td>
<td>2.575</td>
<td>6.334</td>
<td>12.778</td>
<td>25.451</td>
</tr>
<tr>
<td></td>
<td>2.935</td>
<td>7.347</td>
<td>11.245</td>
<td>23.924</td>
</tr>
<tr>
<td></td>
<td>2.317</td>
<td>5.890</td>
<td>12.011</td>
<td>23.669</td>
</tr>
<tr>
<td></td>
<td>3.012</td>
<td>5.764</td>
<td>12.011</td>
<td>25.196</td>
</tr>
<tr>
<td>Lab 3</td>
<td>2.806</td>
<td>7.384</td>
<td>14.943</td>
<td>29.648</td>
</tr>
<tr>
<td></td>
<td>2.834</td>
<td>7.754</td>
<td>15.691</td>
<td>24.015</td>
</tr>
<tr>
<td></td>
<td>2.273</td>
<td>8.566</td>
<td>16.886</td>
<td>26.980</td>
</tr>
<tr>
<td>Lab 4</td>
<td>3.048</td>
<td>7.201</td>
<td>14.292</td>
<td>27.554</td>
</tr>
<tr>
<td></td>
<td>3.201</td>
<td>6.193</td>
<td>12.577</td>
<td>27.279</td>
</tr>
<tr>
<td></td>
<td>2.957</td>
<td>6.841</td>
<td>15.292</td>
<td>28.932</td>
</tr>
<tr>
<td></td>
<td>2.926</td>
<td>7.921</td>
<td>13.720</td>
<td>22.594</td>
</tr>
<tr>
<td>Lab 5</td>
<td>2.674</td>
<td>6.899</td>
<td>14.029</td>
<td>27.615</td>
</tr>
<tr>
<td></td>
<td>2.514</td>
<td>7.037</td>
<td>11.363</td>
<td>27.338</td>
</tr>
<tr>
<td></td>
<td>2.968</td>
<td>7.312</td>
<td>12.626</td>
<td>28.995</td>
</tr>
<tr>
<td></td>
<td>2.647</td>
<td>7.726</td>
<td>15.151</td>
<td>24.025</td>
</tr>
<tr>
<td>Lab 6</td>
<td>2.554</td>
<td>6.166</td>
<td>12.064</td>
<td>23.893</td>
</tr>
<tr>
<td></td>
<td>2.247</td>
<td>6.721</td>
<td>10.978</td>
<td>26.760</td>
</tr>
<tr>
<td></td>
<td>3.141</td>
<td>6.721</td>
<td>11.702</td>
<td>22.698</td>
</tr>
<tr>
<td></td>
<td>2.911</td>
<td>5.549</td>
<td>12.064</td>
<td>25.327</td>
</tr>
<tr>
<td>柯克伦统计值 C</td>
<td>0.318</td>
<td>0.335</td>
<td>0.367</td>
<td>0.344</td>
</tr>
<tr>
<td>总平均值 (μg/g)</td>
<td>2.741</td>
<td>6.841</td>
<td>13.032</td>
<td>25.482</td>
</tr>
<tr>
<td>实验室间相对标准偏差 (%)</td>
<td>6.62</td>
<td>8.66</td>
<td>10.59</td>
<td>5.90</td>
</tr>
<tr>
<td>重复性 S_r (μg/g)</td>
<td>0.316</td>
<td>0.678</td>
<td>1.112</td>
<td>2.327</td>
</tr>
<tr>
<td>再现性 S_r (μg/g)</td>
<td>0.328</td>
<td>0.834</td>
<td>1.683</td>
<td>2.514</td>
</tr>
<tr>
<td>实验室</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>基质加标 1 (μg/g)</td>
<td>基质加标 2 (μg/g)</td>
<td>基质加标 3 (μg/g)</td>
<td>基质加标 4 (μg/g)</td>
</tr>
<tr>
<td>Lab 1</td>
<td>2.366</td>
<td>6.091</td>
<td>12.031</td>
<td>24.551</td>
</tr>
<tr>
<td></td>
<td>2.650</td>
<td>5.360</td>
<td>10.347</td>
<td>25.779</td>
</tr>
<tr>
<td></td>
<td>2.413</td>
<td>4.934</td>
<td>10.347</td>
<td>21.605</td>
</tr>
<tr>
<td>Lab 2</td>
<td>2.558</td>
<td>6.336</td>
<td>12.795</td>
<td>25.367</td>
</tr>
<tr>
<td></td>
<td>2.558</td>
<td>5.386</td>
<td>10.236</td>
<td>27.904</td>
</tr>
<tr>
<td></td>
<td>3.197</td>
<td>6.273</td>
<td>11.899</td>
<td>27.650</td>
</tr>
<tr>
<td></td>
<td>2.814</td>
<td>7.096</td>
<td>12.795</td>
<td>29.172</td>
</tr>
<tr>
<td>Lab 3</td>
<td>2.889</td>
<td>7.361</td>
<td>15.333</td>
<td>30.534</td>
</tr>
<tr>
<td></td>
<td>3.178</td>
<td>5.889</td>
<td>15.946</td>
<td>29.008</td>
</tr>
<tr>
<td></td>
<td>2.398</td>
<td>7.950</td>
<td>13.493</td>
<td>31.756</td>
</tr>
<tr>
<td></td>
<td>3.554</td>
<td>5.889</td>
<td>17.939</td>
<td>26.260</td>
</tr>
<tr>
<td>Lab 4</td>
<td>2.800</td>
<td>6.776</td>
<td>13.202</td>
<td>31.475</td>
</tr>
<tr>
<td></td>
<td>2.884</td>
<td>7.928</td>
<td>12.806</td>
<td>32.734</td>
</tr>
<tr>
<td></td>
<td>3.040</td>
<td>7.115</td>
<td>13.994</td>
<td>30.216</td>
</tr>
<tr>
<td></td>
<td>2.276</td>
<td>7.063</td>
<td>11.882</td>
<td>30.531</td>
</tr>
<tr>
<td>Lab 5</td>
<td>2.771</td>
<td>6.652</td>
<td>13.570</td>
<td>28.028</td>
</tr>
<tr>
<td></td>
<td>2.494</td>
<td>5.388</td>
<td>15.063</td>
<td>33.353</td>
</tr>
<tr>
<td></td>
<td>2.965</td>
<td>6.186</td>
<td>14.384</td>
<td>25.785</td>
</tr>
<tr>
<td></td>
<td>2.882</td>
<td>6.785</td>
<td>14.791</td>
<td>25.785</td>
</tr>
<tr>
<td>Lab 6</td>
<td>2.462</td>
<td>5.789</td>
<td>10.558</td>
<td>22.124</td>
</tr>
<tr>
<td></td>
<td>3.052</td>
<td>5.152</td>
<td>9.185</td>
<td>22.124</td>
</tr>
<tr>
<td></td>
<td>2.265</td>
<td>5.558</td>
<td>10.347</td>
<td>19.912</td>
</tr>
<tr>
<td></td>
<td>1.895</td>
<td>5.847</td>
<td>9.924</td>
<td>18.806</td>
</tr>
<tr>
<td>柯克伦统计值 C</td>
<td>0.339</td>
<td>0.360</td>
<td>0.444</td>
<td>0.429</td>
</tr>
<tr>
<td>总平均值 (μg/g)</td>
<td>2.745</td>
<td>6.352</td>
<td>12.719</td>
<td>26.742</td>
</tr>
<tr>
<td>实验室内相对标准偏差 (%)</td>
<td>10.12</td>
<td>10.87</td>
<td>16.45</td>
<td>14.75</td>
</tr>
<tr>
<td>重复性 Sr (μg/g)</td>
<td>0.342</td>
<td>0.713</td>
<td>1.122</td>
<td>2.224</td>
</tr>
<tr>
<td>再现性 Sr (μg/g)</td>
<td>0.406</td>
<td>0.926</td>
<td>2.307</td>
<td>4.389</td>
</tr>
<tr>
<td>实验室</td>
<td>基质加标 1 (μg/g)</td>
<td>基质加标 2 (μg/g)</td>
<td>基质加标 3 (μg/g)</td>
<td>基质加标 4 (μg/g)</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Lab 1</td>
<td>2.695</td>
<td>6.711</td>
<td>13.720</td>
<td>26.415</td>
</tr>
<tr>
<td></td>
<td>2.695</td>
<td>5.704</td>
<td>12.486</td>
<td>23.509</td>
</tr>
<tr>
<td></td>
<td>2.318</td>
<td>6.845</td>
<td>11.662</td>
<td>27.999</td>
</tr>
<tr>
<td></td>
<td>2.102</td>
<td>6.845</td>
<td>14.132</td>
<td>24.830</td>
</tr>
<tr>
<td>Lab 2</td>
<td>2.528</td>
<td>6.344</td>
<td>12.751</td>
<td>25.506</td>
</tr>
<tr>
<td></td>
<td>2.022</td>
<td>5.710</td>
<td>10.966</td>
<td>27.037</td>
</tr>
<tr>
<td></td>
<td>2.958</td>
<td>7.106</td>
<td>13.006</td>
<td>23.976</td>
</tr>
<tr>
<td></td>
<td>3.059</td>
<td>5.837</td>
<td>14.791</td>
<td>26.017</td>
</tr>
<tr>
<td>Lab 3</td>
<td>2.813</td>
<td>7.806</td>
<td>14.129</td>
<td>28.498</td>
</tr>
<tr>
<td></td>
<td>2.728</td>
<td>9.133</td>
<td>16.389</td>
<td>29.923</td>
</tr>
<tr>
<td></td>
<td>2.222</td>
<td>6.245</td>
<td>12.433</td>
<td>31.347</td>
</tr>
<tr>
<td></td>
<td>3.459</td>
<td>7.182</td>
<td>15.400</td>
<td>27.358</td>
</tr>
<tr>
<td>Lab 4</td>
<td>2.825</td>
<td>6.411</td>
<td>12.831</td>
<td>29.997</td>
</tr>
<tr>
<td></td>
<td>2.712</td>
<td>6.988</td>
<td>14.114</td>
<td>28.498</td>
</tr>
<tr>
<td></td>
<td>3.023</td>
<td>7.244</td>
<td>11.933</td>
<td>27.898</td>
</tr>
<tr>
<td></td>
<td>3.249</td>
<td>5.834</td>
<td>10.650</td>
<td>25.798</td>
</tr>
<tr>
<td>Lab 5</td>
<td>2.624</td>
<td>6.520</td>
<td>14.084</td>
<td>28.336</td>
</tr>
<tr>
<td></td>
<td>2.335</td>
<td>7.499</td>
<td>13.239</td>
<td>26.919</td>
</tr>
<tr>
<td></td>
<td>2.807</td>
<td>7.694</td>
<td>14.788</td>
<td>27.202</td>
</tr>
<tr>
<td></td>
<td>2.178</td>
<td>6.455</td>
<td>12.394</td>
<td>29.469</td>
</tr>
<tr>
<td>Lab 6</td>
<td>2.627</td>
<td>6.235</td>
<td>14.052</td>
<td>25.467</td>
</tr>
<tr>
<td></td>
<td>3.152</td>
<td>6.609</td>
<td>11.382</td>
<td>23.175</td>
</tr>
<tr>
<td></td>
<td>2.417</td>
<td>7.045</td>
<td>14.052</td>
<td>26.995</td>
</tr>
<tr>
<td></td>
<td>2.890</td>
<td>6.484</td>
<td>15.036</td>
<td>26.485</td>
</tr>
<tr>
<td>柯克伦统计值 C</td>
<td>0.320</td>
<td>0.473</td>
<td>0.237</td>
<td>0.242</td>
</tr>
<tr>
<td>总平均值 (μg/g)</td>
<td>2.685</td>
<td>6.770</td>
<td>13.351</td>
<td>27.027</td>
</tr>
<tr>
<td>实验室间相对标准偏差 (%)</td>
<td>7.24</td>
<td>7.03</td>
<td>5.77</td>
<td>5.97</td>
</tr>
<tr>
<td>重复性 Sr (μg/g)</td>
<td>0.366</td>
<td>0.719</td>
<td>1.433</td>
<td>1.616</td>
</tr>
<tr>
<td>再现性 Sr (μg/g)</td>
<td>0.372</td>
<td>0.784</td>
<td>1.461</td>
<td>2.135</td>
</tr>
</tbody>
</table>
表19 1,2-二氯丙烷的测量值和重复性 S_r及再现性 S_r估计

<table>
<thead>
<tr>
<th>实验室</th>
<th>基质加标 1 (μg/g)</th>
<th>基质加标 2 (μg/g)</th>
<th>基质加标 3 (μg/g)</th>
<th>基质加标 4 (μg/g)</th>
</tr>
</thead>
</table>

柯克伦统计值 C 0.328 0.390 0.271 0.250
总平均值 (μg/g) 2.575 6.594 12.998 25.945
实验室间相对标准偏差 (%) 10.24 12.63 4.25 7.22
重复性 S_r (μg/g) 0.343 0.691 1.161 2.365
再现性 S_r (μg/g) 0.397 1.026 1.175 2.775

43
表 20 1,1,1-三氯乙烷的测量值和重复性 Sr 及再现性 Sr 估计

<table>
<thead>
<tr>
<th>实验室</th>
<th>基质加标 1 (μg/g)</th>
<th>基质加标 2 (μg/g)</th>
<th>基质加标 3 (μg/g)</th>
<th>基质加标 4 (μg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>柯克伦统计值 C</td>
<td>0.226 0.298 0.302 0.371</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>总平均值 (μg/g)</td>
<td>2.492 6.736 13.063 26.011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>实验室间相对标准偏差 (%)</td>
<td>11.18 4.47 9.87 9.94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>重复性 Sr (μg/g)</td>
<td>0.258 0.713 1.282 2.220</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>再现性 Sr (μg/g)</td>
<td>0.357 0.738 1.701 3.223</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
表 21 1,1,2-三氯乙烷的测量值和重复性 S_r 及再现性 S_r 估计

<table>
<thead>
<tr>
<th>实验室</th>
<th>基质加标 1 (μg/g)</th>
<th>基质加标 2 (μg/g)</th>
<th>基质加标 3 (μg/g)</th>
<th>基质加标 4 (μg/g)</th>
</tr>
</thead>
</table>

柯克伦统计值 C
| | | | | |
| | 0.304 | 0.411 | 0.215 | 0.253 |

总平均值 (μg/g)
| | | | | |
| | 2.670 | 6.529 | 12.903 | 27.244 |

实验室间相对标准偏差 (%)
| | | | | |
| | 7.28 | 12.79 | 3.66 | 12.25 |

重复性 S_r (μg/g)
| | | | | |
| | 0.367 | 0.676 | 1.364 | 2.701 |

再现性 S_r (μg/g)
| | | | | |
| | 0.372 | 1.020 | 1.450 | 4.076 |
表 22 一溴二氯甲烷的测量值和重复性 S_r 及再现性 S_r 估计

<table>
<thead>
<tr>
<th>实验室</th>
<th>基质加标 1 (μg/g)</th>
<th>基质加标 2 (μg/g)</th>
<th>基质加标 3 (μg/g)</th>
<th>基质加标 4 (μg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab 1</td>
<td>2.602</td>
<td>6.485</td>
<td>13.009</td>
<td>25.732</td>
</tr>
<tr>
<td></td>
<td>2.393</td>
<td>7.783</td>
<td>10.667</td>
<td>23.673</td>
</tr>
<tr>
<td></td>
<td>3.252</td>
<td>5.837</td>
<td>14.830</td>
<td>26.246</td>
</tr>
<tr>
<td></td>
<td>2.758</td>
<td>7.069</td>
<td>13.659</td>
<td>21.872</td>
</tr>
<tr>
<td>Lab 2</td>
<td>2.530</td>
<td>6.328</td>
<td>12.698</td>
<td>25.505</td>
</tr>
<tr>
<td></td>
<td>2.986</td>
<td>5.252</td>
<td>14.984</td>
<td>23.975</td>
</tr>
<tr>
<td></td>
<td>1.999</td>
<td>5.822</td>
<td>11.428</td>
<td>23.210</td>
</tr>
<tr>
<td></td>
<td>2.202</td>
<td>6.454</td>
<td>13.714</td>
<td>24.740</td>
</tr>
<tr>
<td>Lab 3</td>
<td>2.503</td>
<td>6.995</td>
<td>13.670</td>
<td>27.365</td>
</tr>
<tr>
<td></td>
<td>1.877</td>
<td>6.296</td>
<td>12.986</td>
<td>25.723</td>
</tr>
<tr>
<td></td>
<td>2.052</td>
<td>7.555</td>
<td>15.447</td>
<td>29.281</td>
</tr>
<tr>
<td></td>
<td>2.803</td>
<td>6.575</td>
<td>13.533</td>
<td>31.196</td>
</tr>
<tr>
<td>Lab 4</td>
<td>2.733</td>
<td>6.215</td>
<td>12.358</td>
<td>28.983</td>
</tr>
<tr>
<td></td>
<td>3.362</td>
<td>5.842</td>
<td>11.246</td>
<td>34.200</td>
</tr>
<tr>
<td></td>
<td>2.214</td>
<td>5.780</td>
<td>10.628</td>
<td>30.143</td>
</tr>
<tr>
<td></td>
<td>2.514</td>
<td>6.775</td>
<td>10.875</td>
<td>25.216</td>
</tr>
<tr>
<td>Lab 5</td>
<td>2.195</td>
<td>6.432</td>
<td>13.731</td>
<td>26.679</td>
</tr>
<tr>
<td></td>
<td>1.690</td>
<td>5.145</td>
<td>14.143</td>
<td>30.681</td>
</tr>
<tr>
<td></td>
<td>1.734</td>
<td>5.274</td>
<td>13.594</td>
<td>25.345</td>
</tr>
<tr>
<td></td>
<td>2.239</td>
<td>7.461</td>
<td>12.770</td>
<td>26.412</td>
</tr>
<tr>
<td>Lab 6</td>
<td>2.752</td>
<td>6.387</td>
<td>14.054</td>
<td>25.432</td>
</tr>
<tr>
<td></td>
<td>2.340</td>
<td>5.621</td>
<td>13.492</td>
<td>27.466</td>
</tr>
<tr>
<td></td>
<td>3.055</td>
<td>6.004</td>
<td>13.211</td>
<td>24.160</td>
</tr>
<tr>
<td></td>
<td>2.862</td>
<td>5.684</td>
<td>16.725</td>
<td>28.229</td>
</tr>
<tr>
<td>柯克伦统计值 C</td>
<td>0.260</td>
<td>0.422</td>
<td>0.308</td>
<td>0.412</td>
</tr>
<tr>
<td>总平均值 (μg/g)</td>
<td>2.485</td>
<td>6.295</td>
<td>13.227</td>
<td>26.728</td>
</tr>
<tr>
<td>实验室间相对标准偏差 (%)</td>
<td>12.67</td>
<td>6.65</td>
<td>8.09</td>
<td>7.99</td>
</tr>
<tr>
<td>重复性 S_r (μg/g)</td>
<td>0.390</td>
<td>0.684</td>
<td>1.291</td>
<td>2.354</td>
</tr>
<tr>
<td>再现性 S_r (μg/g)</td>
<td>0.462</td>
<td>0.725</td>
<td>1.547</td>
<td>2.953</td>
</tr>
</tbody>
</table>

46
表 23 二溴一氯甲烷的测量值和重复性 S_r 及再现性 S_r 估计

<table>
<thead>
<tr>
<th>实验室</th>
<th>基质加标 1 (μg/g)</th>
<th>基质加标 2 (μg/g)</th>
<th>基质加标 3 (μg/g)</th>
<th>基质加标 4 (μg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab 1</td>
<td>2.567</td>
<td>6.445</td>
<td>13.153</td>
<td>26.093</td>
</tr>
<tr>
<td></td>
<td>2.234</td>
<td>7.089</td>
<td>10.522</td>
<td>21.396</td>
</tr>
<tr>
<td></td>
<td>2.901</td>
<td>6.251</td>
<td>11.574</td>
<td>28.441</td>
</tr>
<tr>
<td></td>
<td>2.336</td>
<td>7.540</td>
<td>14.073</td>
<td>21.918</td>
</tr>
<tr>
<td>Lab 2</td>
<td>2.542</td>
<td>6.391</td>
<td>12.790</td>
<td>25.629</td>
</tr>
<tr>
<td></td>
<td>3.127</td>
<td>6.967</td>
<td>13.941</td>
<td>29.986</td>
</tr>
<tr>
<td></td>
<td>3.127</td>
<td>5.113</td>
<td>13.174</td>
<td>24.091</td>
</tr>
<tr>
<td></td>
<td>3.051</td>
<td>7.158</td>
<td>14.964</td>
<td>28.961</td>
</tr>
<tr>
<td>Lab 3</td>
<td>2.350</td>
<td>6.764</td>
<td>13.098</td>
<td>27.020</td>
</tr>
<tr>
<td></td>
<td>2.280</td>
<td>6.088</td>
<td>11.788</td>
<td>23.778</td>
</tr>
<tr>
<td></td>
<td>2.679</td>
<td>5.614</td>
<td>13.491</td>
<td>25.129</td>
</tr>
<tr>
<td></td>
<td>1.998</td>
<td>7.847</td>
<td>13.622</td>
<td>22.967</td>
</tr>
<tr>
<td>Lab 4</td>
<td>2.956</td>
<td>6.896</td>
<td>14.113</td>
<td>30.599</td>
</tr>
<tr>
<td></td>
<td>2.276</td>
<td>6.275</td>
<td>12.701</td>
<td>25.703</td>
</tr>
<tr>
<td></td>
<td>2.749</td>
<td>6.000</td>
<td>13.548</td>
<td>32.129</td>
</tr>
<tr>
<td></td>
<td>3.488</td>
<td>5.655</td>
<td>13.125</td>
<td>32.129</td>
</tr>
<tr>
<td>Lab 5</td>
<td>2.785</td>
<td>6.643</td>
<td>13.304</td>
<td>28.181</td>
</tr>
<tr>
<td></td>
<td>3.453</td>
<td>7.042</td>
<td>11.974</td>
<td>26.208</td>
</tr>
<tr>
<td></td>
<td>2.506</td>
<td>7.573</td>
<td>13.570</td>
<td>26.490</td>
</tr>
<tr>
<td></td>
<td>2.840</td>
<td>7.440</td>
<td>11.043</td>
<td>32.126</td>
</tr>
<tr>
<td>Lab 6</td>
<td>2.531</td>
<td>5.769</td>
<td>13.466</td>
<td>24.022</td>
</tr>
<tr>
<td></td>
<td>2.253</td>
<td>5.135</td>
<td>14.004</td>
<td>21.860</td>
</tr>
<tr>
<td></td>
<td>1.899</td>
<td>6.635</td>
<td>12.792</td>
<td>23.301</td>
</tr>
<tr>
<td></td>
<td>3.114</td>
<td>5.250</td>
<td>14.812</td>
<td>22.821</td>
</tr>
<tr>
<td>柯克伦统计值 C</td>
<td>0.286</td>
<td>0.307</td>
<td>0.380</td>
<td>0.288</td>
</tr>
<tr>
<td>总平均值 (μg/g)</td>
<td>2.668</td>
<td>6.483</td>
<td>13.110</td>
<td>26.291</td>
</tr>
<tr>
<td>实验室间相对标准偏差（%）</td>
<td>10.16</td>
<td>7.89</td>
<td>4.70</td>
<td>10.21</td>
</tr>
<tr>
<td>重复性 S_r (μg/g)</td>
<td>0.392</td>
<td>0.714</td>
<td>1.051</td>
<td>2.575</td>
</tr>
<tr>
<td>再现性 S_r (μg/g)</td>
<td>0.434</td>
<td>0.803</td>
<td>1.099</td>
<td>3.490</td>
</tr>
</tbody>
</table>
表 24 三溴甲烷的测量值和重复性 Sr 及再现性 S_r 估计

<table>
<thead>
<tr>
<th>实验室</th>
<th>基质加标 1 (μg/g)</th>
<th>基质加标 2 (μg/g)</th>
<th>基质加标 3 (μg/g)</th>
<th>基质加标 4 (μg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>柯克伦统计值 C</td>
<td>0.385 0.402 0.320 0.276</td>
<td>0.411 0.857 1.533 2.827</td>
<td>0.255 0.650 1.246 2.368</td>
<td>0.385 0.402 0.320 0.276</td>
</tr>
<tr>
<td>总平均值 (μg/g)</td>
<td>2.524 6.610 14.211 26.512</td>
<td>13.74 9.78 7.67 7.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>实验室间相对标准偏差（%）</td>
<td>13.74 9.78 7.67 7.34</td>
<td>0.255 0.650 1.246 2.368</td>
<td>0.411 0.857 1.533 2.827</td>
<td></td>
</tr>
</tbody>
</table>
图 14 二氯甲烷的重复性 Sr、再现性 SR 和 m 的关系

图 15 三氯甲烷的重复性 Sr、再现性 SR 和 m 的关系
图 16 四氯化碳的重复性 S_r、再现性 S_R 和 m 的关系

\[y = 0.1457x - 0.1678 \]
\[R^2 = 0.9838 \]

\[y = 0.0994x + 0.0811 \]
\[R^2 = 0.9964 \]

图 17 氯乙烯的重复性 S_r、再现性 S_R 和 m 的关系

\[y = 0.1386x + 0.5891 \]
\[R^2 = 0.7142 \]

\[y = 0.0767x + 0.1543 \]
\[R^2 = 0.999 \]
图 18 1,1-二氯乙烯的重复性 S_r，再现性 S_a 和 m 的关系

$y = 0.1267x + 0.0218$

$R^2 = 0.9973$

$y = 0.1088x - 0.0099$

$R^2 = 0.9967$

图 19 反-1,2-二氯乙烯的重复性 S_r，再现性 S_a 和 m 的关系

$y = 0.1153x + 0.0856$

$R^2 = 0.9944$

$y = 0.1077x - 0.0336$

$R^2 = 0.9969$
图 20 顺-1,2-二氯乙烯的重复性 S_r、再现性 S_R 和 m 的关系

$$y = 0.0785x + 0.4048 \quad R^2 = 0.7798$$

$$y = 0.0625x + 0.2489 \quad R^2 = 0.9786$$

0 0.5 1 1.5 2 2.5 3

0 5 10 15 20 25 30

m(μg/g)

Sr, SR (μg/g)

图 21 三氯乙烯的重复性 S_r、再现性 S_R 和 m 的关系

$$y = 0.0954x + 0.1925 \quad R^2 = 0.968$$

$$y = 0.0881x + 0.0492 \quad R^2 = 0.9958$$

0 0.5 1 1.5 2 2.5 3

0 5 10 15 20 25 30

m(μg/g)

Sr, SR (μg/g)
图 22 四氯乙烯的重复性 Sᵣ、再现性 Sᵣ 和 m 的关系

\[
y = 0.1678x - 0.0294 \\
R^2 = 0.9939
\]

图 23 1,2-二氯乙烷的重复性 Sᵣ、再现性 Sᵣ 和 m 的关系

\[
y = 0.0769x + 0.1666 \\
R^2 = 0.9974
\]
图 24 1,2-二氯丙烷的重复性 S_r、再现性 S_x 和 m 的关系

$\begin{align*}
\text{1,2-二氯丙烷} \\
y &= 0.0971x + 0.1756 \\
R^2 &= 0.9609 \\
y &= 0.0863x + 0.1024 \\
R^2 &= 0.9978
\end{align*}$

图 25 1,1,1-三氯乙烷的重复性 S_r、再现性 S_x 和 m 的关系

$\begin{align*}
\text{1,1,1-三氯乙烷} \\
y &= 0.1243x + 0.0032 \\
R^2 &= 0.9963 \\
y &= 0.0822x + 0.1258 \\
R^2 &= 0.9929
\end{align*}$
图 26 1,1,2-三氯乙烷的重复性 S_r、再现性 S_r 和 m 的关系

$$y = 0.1488x - 0.1067$$
$$R^2 = 0.9774$$

$$y = 0.096x + 0.0932$$
$$R^2 = 0.999$$

图 27 一溴二氯甲烷的重复性 S_r、再现性 S_r 和 m 的关系

$$y = 0.1049x + 0.1435$$
$$R^2 = 0.9974$$

$$y = 0.0814x + 0.1881$$
$$R^2 = 0.9995$$
3.8 正确度实验（实验室间比对）

为验证土壤中 15 种卤代烃测定标准方法的可行性，邀请 6 家测试单位（同 3.7 节）按照 3.6 节的实验方法，对土壤中挥发性有机物标准物质进行测定。
3.8.1 结果统计与分析

（1）Lab1

土壤标准物质测试结果见图30和图31。可以看出，烷烃类相对标准偏差较小，样品测定的平行性较好。有机物中达到置信区间的只有二氯甲烷，占土壤可测定有机物总数的5.88%，而达到可预测变化范围的烷烃有7个，分别为二氯甲烷、三氯甲烷、1,1,2-三氯乙烷、二溴一氯甲烷、三溴甲烷、1,1,2,2-四氯乙烷、1,2,3-三氯丙烷，占总数的47.18%。烷烃类有机物的测定平行性较好，但是与标准土壤的给定数据存在很大的偏差。
图 31 标准土中烷烃类预测区间和测定浓度

标准样品中给定的烯烃类只有 1,1-二氯乙烯，三氯乙烯和苯乙烯。实验结果表明，只有三氯乙烯能够接近样品所给定的标准浓度值（图 32、图 33）。

图 32 标准土中烯烃类置信区间和测定浓度
综上所述，所有化合物中能够达到置信区间有1个，占VOC总数的1.85%。能够达到可预测变化范围的，除二氯甲烷外（因为二氯甲烷达到了置信区间），有13个，占总数的24.07%。

（2）Lab2

从图34、图35中可以看出，只有二氯甲烷浓度在置信区间范围内，而达到可预测变化范围的烷烃有11个，分别为二氯甲烷、三氯甲烷、1,2-二氯乙烷、1,2-二氯丙烷、1,1,2-三氯乙烷、1-溴二氯甲烷、1-溴-1-氯甲烷、1,2-二溴乙烷、三溴甲烷、1,1,2,2-四氯乙烷和1,2,3-三氯丙烷，占烷烃类总数的61.5%。

根据实验结果，三氯乙烯的测定结果为0.7，约等于标准土壤浓度参考值0.697。其没有参考的置信区间和预测区间。
综上所述，三氯乙烯的回收达到标准土壤参考值，所有化合物中能够达到可预测变化范围的有 19 个，占 VOC 总数的 35.19%。

(3) Lab3

土壤标准物质测试结果如图 36、图 37，烷烃类达到置信区间的只有二氯甲烷，占烷烃数的 5.26%，而达到可预测变化范围的烷烃有 11 个，分别为二
氯甲烷、三氯甲烷、1,1,2-三氯乙烷、一溴二氯甲烷、1,2-二氯丙烷、1,1,1-三氯乙烷、二溴一氯甲烷、1,2-二溴乙烷。三氯甲烷、1,1,2-三氯乙烷、二溴一氯甲烷、1,2-二溴乙烷、三氯甲烷、1,1,2,2-四氯乙烷、1,2,3-三氯丙烷，占总数的57.89%。实验结论与Lab1和Lab2相同。

根据实验结果，没有一种烯烃浓度能够达到所给定的区间。三氯甲烷浓度与标准值接近（图38、图39）。
综上所述，所有化合物中能够达到置信区间有 1 个，占总数的 1.85%，能够达到可预测变化范围的，除二氯甲烷外（因为二氯甲烷达到了置信区间），有 22 个，占总数的 40.74%。苯类达到可预测范围的数量多于 6.1 和 6.2 的测试结果。

（4）Lab4
土壤标准物质测试结果如图 40、图 41，烷烃类达到置信区间的有 7 个，分别为二氯甲烷、1,1,2-三氯乙烷、二溴一氯甲烷、1,2-二溴乙烷、三氯甲烷、1,1,2,2-四氯乙烷和 1,2,3-三氯丙烷，占总数的 35.00%，而达到可预测变化范围的烷烃有 12 个，分别为二氯甲烷、三氯甲烷、1,2-二氯乙烷、1,1-二氯乙烷、一溴二氯甲烷、1,2-二氯丙烷、1,1,2-三氯乙烷、二溴一氯甲烷、1,2-二溴乙烷、三溴甲烷、1,1,2,2-四氯乙烷、1,2,3-三氯丙烷，占总数的 60.00%。

图 40 标准土中烷烃类置信区间和测定浓度
图 41 标准土中烷烃类预测区间和测定浓度

根据实验结果，没有一种烯烃能够达到所给定的区间。但三氯乙烯的测定结果为 0.75，接近其给定的标准土壤浓度参考值 0.697，误差为 6.70%。

综上所述，所有化合物中能够达到置信区间有 13 个，占 VOCs 总数的 24.07%，能够达到可预测变化范围的，除达到了置信区间的外，有 24 个，占总数的 44.44%。

（5）Lab5

土壤标准物质测试结果如图 42、图 43，烷烃类达到置信区间的有 4 个，分别为二氯甲烷、1,2-二氯乙烷、1,2-二氯丙烷、1,2,3-三氯丙烷，占总数的 20.00%，而达到可预测变化范围的烷烃有 11 个，分别为二氯甲烷、三氯甲烷、1,1-二氯乙烷、一溴二氯甲烷、1,2-二氯丙烷、1,1,2-三氯乙烷、二氯一氯甲烷、1,2-二溴乙烷、三溴甲烷、1,1,2,2-四氯乙烷、1,2,3-三氯丙烷，占总数的 55.00%。
根据实验结果，只有 1,1-二氯乙烯能够达到可预测变化范围。三氯乙烯的测定结果为 0.68，接近其给定的标准土壤浓度参考值 0.697（图 44、图 45）。

可见所有化合物中能够达到置信区间有 7 个，占总数的 12.96%，能够达到可预测变化范围的，除达到了置信区间的外，有 23 个，占总数的 42.59%。VOC 测定结果与标准置信区间还是有很大的差距，但大部分能够达到标准浓度的
预测范围。

图 44 标准土中烯烃类置信区间和测定浓度

图 45 标准土中烯烃类预测区间和测定浓度

(6) Lab6

土壤标准物质测试结果如图 46、图 47，烷烃类达到置信区间的有两个，分别为 1,1,2,2-四氯乙烷和 1,2,3-三氯丙烷，占烷烃类总数的 10.00%，达到
可预测变化范围的烷烃有 11 个，分别为二氯甲烷、三氯甲烷、1, 2-二氯乙烷、1, 2-二氯丙烷、一溴二氯甲烷、1, 1, 2-三氯乙烷、1, 2-二溴乙烷、三溴甲烷、1, 1, 2, 2-四氯乙烷、1, 2, 3-三氯丙烷，占烷烃类总数的 55.00%。与 Lab5 的测定结果相同。

图 46 标准土中烷烃类置信区间和测定浓度

图 47 标准土中烷烃类预测区间和测定浓度
根据实验结果，三氯乙烯测定结果与标准值相近。烯烃类测试结果与前5组相同（图48、图49）。

图48 标准土中烯烃类置信区间和测定浓度

图49 标准土中烯烃类预测区间和测定浓度
综上所述，所有化合物中能够达到置信区间有两个，占 VOC 总数的 15.00%，有 22 种有机物能够达到可预测变化范围，占 54 种 VOC 总数的 40.74%。

3.8.2 测量方法偏倚的估计

对 6 个实验室分析结果进行重现性和再现性分析，在 15 种卤代烃中标准物质中 11 种目标物，结果见表 25。其中二氯甲烷和三氯乙烯的含量低于本方法的定量限，仅统计数据，但不用于方法的评价；另外，6 家实验室的 1,1-二氟乙烯和四氯化碳的结果都在证书提供的可预测变化区间，也不予统计。

表 25 CRM628-030 不同实验室测试结果
<table>
<thead>
<tr>
<th>有机物 (浓度 mg/kg)</th>
<th>Lab5</th>
<th>Lab6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>s1</td>
<td>s2</td>
</tr>
<tr>
<td>二氯甲烷</td>
<td>0.956</td>
<td>0.821</td>
</tr>
<tr>
<td>四氯化碳</td>
<td>2.074</td>
<td>1.869</td>
</tr>
<tr>
<td>1,1-二氯乙烯</td>
<td>9.377</td>
<td>6.368</td>
</tr>
<tr>
<td>三氯乙烯</td>
<td>0.634</td>
<td>0.663</td>
</tr>
<tr>
<td>1,2-二氯乙烷</td>
<td>3.897</td>
<td>3.731</td>
</tr>
<tr>
<td>1,1,2-三氯乙烷</td>
<td>7.181</td>
<td>7.017</td>
</tr>
<tr>
<td>二溴一氯甲烷</td>
<td>2.419</td>
<td>2.336</td>
</tr>
<tr>
<td>三溴甲烷</td>
<td>2.721</td>
<td>2.530</td>
</tr>
</tbody>
</table>

采用柯克伦 (Cochran) 法检验各实验室间在同一水平下单元方差是否存在异常。计算各水平下的 C 值 (表26)。查表可知，测量次数 $n=4$，实验室数 $p=6$，显著水平 $\alpha=1\%$，C 临界值为 0.626；$\alpha=5\%$，C 临界值为 0.532。

表26 柯克伦统计量

<table>
<thead>
<tr>
<th>有机物</th>
<th>C</th>
<th>有机物</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>三氯甲烷</td>
<td>0.391</td>
<td>1,1,2-三氯乙烷</td>
<td>0.428</td>
</tr>
<tr>
<td>1,2-二氯乙烷</td>
<td>0.359</td>
<td>二溴一氯甲烷</td>
<td>0.554*</td>
</tr>
<tr>
<td>1,2-二氯丙烷</td>
<td>0.348</td>
<td>三溴甲烷</td>
<td>0.773**</td>
</tr>
<tr>
<td>一溴二氯甲烷</td>
<td>0.368</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a）检验统计量小于等于 5%的临界值，则接受检测项目为正确值；
b）检测统计量大于 5%的临界值，但小于等于 1%的临界值，则被检测项目称歧离值，
且用单星号 (*) 标出；
c）检测项目大于 1%的临界值，则被检测项目称为统计离群值，且用双星号 (**) 标出。
从统计表中可以看出，一溴一氯甲烷的 C 值为歧离值，用单星号(*)标出；三溴甲烷的 C 为统计离群值，且用双星号(**)标出。歧离值与离群值都来自于 S4 实验室数据。

因此采用格拉布斯（Grubbs）法来对该单元的数据进行检验，结果见表 27。

<table>
<thead>
<tr>
<th></th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>三氯甲烷</td>
<td>1.170</td>
<td>1.082</td>
<td>0.621</td>
</tr>
<tr>
<td>1,2-二氯乙烷</td>
<td>1.131</td>
<td>1.069</td>
<td>0.660</td>
</tr>
<tr>
<td>1,2-二氯丙烷</td>
<td>1.150</td>
<td>1.052</td>
<td>0.618</td>
</tr>
<tr>
<td>一溴二氯甲烷</td>
<td>1.176</td>
<td>1.034</td>
<td>0.645</td>
</tr>
<tr>
<td>1,1,2-三氯乙烷</td>
<td>1.246</td>
<td>0.900</td>
<td>0.742</td>
</tr>
<tr>
<td>二溴一氯甲烷</td>
<td>1.145</td>
<td>0.980</td>
<td>0.773</td>
</tr>
<tr>
<td>三溴甲烷</td>
<td>1.110</td>
<td>0.847</td>
<td>0.859</td>
</tr>
</tbody>
</table>

a) 检验统计量小于等于 5% 的临界值，则接受检测项目为正确值；
b) 检验统计量大于 5% 的临界值，但小于等于 1% 的临界值，则被检测项目称歧离值，且用单星号(*)标出；
c）检测项目大于 1%的临界值，则被检测项目称为统计离群值，且用双星号（**)标出。

查表得测量次数$n=4, p=6$时，显著水平$\alpha=1\%$, G_p临界值为1.496；$\alpha=5\%$, G_p临界值为1.481。歧离值不能用技术误差解释，仍然保留。

经格拉布斯（Grubbs）检验的结果表明，在单元内无统计离群值；因此删除科克伦检验的离群值，即删除S_3实验室的三溴甲烷的全部数据，再进行科克伦检验，查表得测量次数$p=5$时，显著水平$\alpha=1\%$, G_α临界值为1.764；$\alpha=5\%$, G_α临界值为1.715。再次检验不存在异常（表28）。

表28 科克伦统计量修正

<table>
<thead>
<tr>
<th>有机物</th>
<th>p</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>三溴甲烷</td>
<td>5</td>
<td>0.33</td>
</tr>
</tbody>
</table>

通过上述异常值检验，剔除异常数据后，整理数据。重复性与再现性标准差及测量方法偏倚的估计的计算结果见表29。

表29 重复性与再现性标准差及测量方法偏倚的估计

<table>
<thead>
<tr>
<th>组分</th>
<th>二氯甲烷</th>
<th>三氯甲烷</th>
<th>一溴二氯甲烷</th>
<th>二溴一氯甲烷</th>
<th>三溴甲烷</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>p</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>S_1 (µg/g)</td>
<td>0.52</td>
<td>0.63</td>
<td>0.35</td>
<td>0.28</td>
<td>0.14</td>
</tr>
<tr>
<td>S_2 (µg/g)</td>
<td>0.54</td>
<td>1.08</td>
<td>0.51</td>
<td>0.66</td>
<td>0.22</td>
</tr>
<tr>
<td>r</td>
<td>1.04</td>
<td>1.71</td>
<td>1.45</td>
<td>2.37</td>
<td>1.53</td>
</tr>
<tr>
<td>A</td>
<td>0.44</td>
<td>0.69</td>
<td>0.64</td>
<td>0.74</td>
<td>0.72</td>
</tr>
<tr>
<td>\bar{y} (µg/g)</td>
<td>0.81</td>
<td>4.18</td>
<td>3.46</td>
<td>2.92</td>
<td>2.71</td>
</tr>
<tr>
<td>μ (µg/g)</td>
<td>0.85</td>
<td>6.39</td>
<td>4.82</td>
<td>3.67</td>
<td>3.62</td>
</tr>
<tr>
<td>δ (µg/g)</td>
<td>-0.04</td>
<td>-2.21</td>
<td>-1.36</td>
<td>-0.75</td>
<td>-0.91</td>
</tr>
<tr>
<td>$\delta - A \times S_1$ (µg/g)</td>
<td>-0.28</td>
<td>-2.95</td>
<td>-1.69</td>
<td>-1.25</td>
<td>-1.07</td>
</tr>
<tr>
<td>$\delta + A \times S_2$ (µg/g)</td>
<td>0.19</td>
<td>-1.46</td>
<td>-1.04</td>
<td>-0.26</td>
<td>-0.75</td>
</tr>
</tbody>
</table>
需要提及的是，本方法首次采用了挥发性标准物质用于对15种卤代烃的顶空-GC-MS测试方法研究的可靠性进行验证，研究起点高，但同时研究难度大。针对6家实验室的1,1-二氯乙烯和四氯化碳检测结果超出证书提供的可预测变化区间的问题（数据列于表30），根据4.5.1的该标准物质采用吹扫捕集-GC-MS的检测结果，和4.6.3的液固比实验结果，该标准物质一批次共购买10瓶，8瓶样品独立检测结果显示，对于特性量1,1-二氯乙烯和四氯化碳，有限证据表明该标准物质存在瓶间不均匀性；此外不排除标准物质因运输和储存导致的部分组分的挥发损失。因此，在实验室比对过程中，不对1,1-二氯乙烯和四氯化碳进行统计分析，也不将这两个特性量测量的结果用于该标准方法研究验证合理性的判据。

<table>
<thead>
<tr>
<th>组分</th>
<th>三氯乙烯</th>
<th>1,2-二氯乙烷</th>
<th>1,2-二氯丙烷</th>
<th>1,1,2-三氯乙烷</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>p</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>S_r (µg/g)</td>
<td>0.15</td>
<td>0.37</td>
<td>0.55</td>
<td>0.57</td>
</tr>
<tr>
<td>S_p (µg/g)</td>
<td>0.20</td>
<td>0.70</td>
<td>1.00</td>
<td>0.78</td>
</tr>
<tr>
<td>r</td>
<td>1.37</td>
<td>1.89</td>
<td>1.81</td>
<td>1.37</td>
</tr>
<tr>
<td>A</td>
<td>0.62</td>
<td>0.71</td>
<td>0.70</td>
<td>0.62</td>
</tr>
<tr>
<td>μ (µg/g)</td>
<td>(0.697)</td>
<td>3.86</td>
<td>6.01</td>
<td>8.61</td>
</tr>
<tr>
<td>δ (µg/g)</td>
<td>-0.003</td>
<td>-1.12</td>
<td>-1.56</td>
<td>-1.73</td>
</tr>
<tr>
<td>$\delta-A*S_r$ (µg/g)</td>
<td>-0.128</td>
<td>-1.61</td>
<td>-2.26</td>
<td>-2.22</td>
</tr>
<tr>
<td>$\delta+A*S_r$ (µg/g)</td>
<td>0.122</td>
<td>-0.62</td>
<td>-0.85</td>
<td>-1.25</td>
</tr>
</tbody>
</table>

表30 6家实验室2种卤代烃的检测结果 单位: mg/kg

<table>
<thead>
<tr>
<th>实验室</th>
<th>1,1-二氯乙烯</th>
<th>四氯化碳</th>
</tr>
</thead>
<tbody>
<tr>
<td>lab1</td>
<td>0.909 0.355 1.107 -</td>
<td>1.269 0.805 1.665 0.493</td>
</tr>
<tr>
<td>lab2</td>
<td>1.751 - 1.414 1.088</td>
<td>1.817 0.656 1.758 1.552</td>
</tr>
</tbody>
</table>
第四章 采用国际标准和国外先进标准的程度以及与国际、国内同类标准水平的对比情况

【无】

第五章 与有关的现行法律、法规和强制性标准的关系

本标准与有关的法律法规和强制性标准不矛盾，与相关标准相互协调一致。

第六章 重大分歧意见的处理经过和依据

【无】

第七章 标准作为强制性和推荐性标准的建议

我国标准化法规定：保障人体健康、人身财产安全的标准和法律，行政法规规定强制执行的标准属于强制性标准。

由于本标准不涉及以下几方面的技术要求：

1、有关国家安全的技术要求；

2、保障人体健康和人身、财产安全的要求；

3、产品及产品生产、储运和使用中的安全、卫生、环境保护要求及国家需要控制的工程建设的其他要求；

4、工程建设的质量、安全、卫生、环境保护按要求及国家需要控制的工
程建设的其他要求；

5、污染物排放限值和环境质量要求；

6、保护动植物生命安全和健康要求；

7、防止欺骗、保护消费者利益的要求；

8、国家需要控制的重要产品的技术要求。

因此，建议本标准为推荐性标准。

第八章 贯彻标准的要求和措施建议

本标准发布后，建议由全国自然资源与国土空间规划标准化技术委员会制定标准贯彻实施计划。建议标准发布后，3个月内实施。

挥发性有机物是土壤中一类重要的有机污染物，在土壤介质中广泛存在，建议将此标准方法作为推荐性标准在地质调查项目中进行普查，但实施过程中要特别注意采样环节样品的保存与挥发损失的控制。

第九章 废止现行有关标准的建议

【无】

第十章 其他应予说明的事项

10.1 关于修改标准名称的说明

原计划标准名称为《土壤中15种挥发性卤代有机污染物的分析方法 (GC-MS)》，现报批标准名称为《地球化学土壤样品 15种挥发性卤代烃的测定 顶空-气相色谱-质谱法》，更改的原因为：进一步规范标准名称，并与相关标准相一致。此为编辑性修改，不涉及标准范围改动。
10.2 关于专利情况的说明

本标准在编制过程中未识别出涉及专利。